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ABSTRACT:  We analyze reputation in a game between a patient player 1 and a non-

myopic but less patient opponent, player 2. Player 1’s type is private information and he 

may be a "commitment type" who is locked into playing a particular strategy. We assume 

that players do not directly observe each other's action but rather see an imperfect signal 

of it. In particular, we assume that the support of the distribution of signals is independent 

of how player 2 plays. We show that in any Nash equilibrium of the game  player 1 will 

get a payoff close to the largest payoff consistent with player 2 choosing a best response 

in a finite truncation of the game. Moreover, we show that if the discount factor of player 

2 is sufficiently large then  player 1 will essentially get the maximum payoff consistent 

with player 2 getting at least his pure strategy minmax payoff in any Nash equilibrium.  

                                                 
1 The authors are grateful for financial support from NSF grants SBR-9223320 and SBR-9223175, 
DGICYT and the UCLA Academic Senate. 
2Departments of Economics Universidad Carlos III de Madrid, Harvard, UCLA and Northwestern. 
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1.  Introduction 

 We consider a game between a patient player 1 and a non-myopic but less patient 

opponent, player 2.  As usual in reputation models, we suppose that the patient player's 

type is private information, and that he may be a "commitment type" who is locked in to 

playing a particular strategy.  We investigate the extent to which an uncommitted or 

"normal" type of patient player can exploit his less patient opponent's uncertainty to 

maintain a reputation for playing like a commitment type. 

 Most previous work on reputation effects has supposed that player 2 is in fact 

completely myopic, or equivalently that player 2 corresponds to a sequence of short run 

players (see Kreps and Wilson [1982], Milgrom and Roberts [1982], Fudenberg and 

Levine [1989], [1992]).3 Since a myopic player 2 will play a short-run best response in 

each period to that period's expected play, the best possible commitment for the long run 

player is to the Stackelberg strategy for the corresponding static game. 

 This paper consider the patient player 1 has discount factor δ 1  near 1, while his 

opponent  player 2 is an infinite-lived player who discounts future payoffs with a smaller 

discount factor δ 2 .  Perhaps the best way to interpret this assumption of unequal discount 

factors is to interpret the model as a shorthand for a situation where player 1 faces a large 

number of different but identical player 2’s, each of whom observe all previous play and 

who either alternate play, or play consecutively.   Under either interpetation, the key is 

that player 1 cares more about future payoffs of this game than player 2 does, because he 

will be playing in more future periods.4  

  A game with a non-myopic opponent differs from one with a myopic opponent in 

two main ways. First, because a non-myopic opponent cares about future payoffs, the 

static Stackelberg strategy is no longer necessarily the best possible commitment:  Higher 

payoffs can sometimes be attained by the use of rewards and punishments. In the 

prisoner's dilemma, for example, "tit-for-tat" is a better commitment against a non-

myopic opponent than the Stackelberg strategy of defecting. Second, it may be difficult to 

                                                 
3Celentani and Pesendorfer (1992) consider dynamic games with one large player and a continuum of small 
but long lived players. Small players in this setting care about the future but cannot influence the relevant 
history of the game and hence are strategically myopic. 
4 Thus the intuition for our results is similar to that for the “sequential contests” model of Fudenberg and 
Kreps [1987] 
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demonstrate that one is using a strategy with rewards and punishments unless these 

rewards and punishments are occasionally carried out.  This is similar to the way in which 

incorrect off-path beliefs can weaken reputation effects in the play of extensive-form 

games against myopic opponents (Fudenberg and Levine [1989]).5 

 Our main assumption is that  player 1 does not observe player 2's intended action, 

but only sees an imperfect signal of it, as in a model of moral hazard.  Indeed, we assume 

that the support of the distribution of signals is independent of how player 2 plays. 

Intuitively, this ensures that player 1 will be called on to periodically use all rewards or 

punishments, thus eliminating the problem of player 2 misperceiving how player 1 would 

respond to a deviation.  As a result, player 1's equilibrium payoff is bounded below by 

what he could get through commitment in the repeated game.  In particular, if player 2 is 

sufficiently patient, player 1 gets approximately the greatest feasible payoff consistent 

with the individual rationality of player 2.   

 This conclusion holds with an abitrarily small amount of noise. However, as the 

amount of noise shrinks, the patient player's discount factor must be increasingly close to 

one to ensure that its Nash equilibrium payoff is close to its limit value.  Consequently, 

our result is of the most relevance when the amount of noise is “significant.”6 

 The first general study of reputation with two non-myopic players is Schmidt 

[1993], who studied perfect observability. He showed that the long-run player can 

guarantee at least the payoff he would get from precommitment to a static strategy that 

minmaxes his opponent. This is good bound in some games, but in others, such as the 

prisoner's dilemma, it imposes no restrictions beyond those implied by individual 

rationality.  Subsequently Cripps, Schmidt and Thomas [1993] provided tight bounds in 

the case of perfect observability; Cripps and Thomas [1994] provide the parallel result 

when both players have time-average payoffs. 

                                                 
5Celentani (1991) uses multiple types of short-run players to get around the problem of unobservable off-
path behavior of the long-run player in non-degenerate extensive form stage games. His approach can be 
extended to short run players who live for more than one period.  
 
6 In contrast, with a myopic opponent and simultaneous-move stage games, as in Fudenberg-Levine [1989],  
reputation effects often imply strong bounds for reasonable discount  factors and prior beliefs. 
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 The key point is that with perfectly observed actions, the problem of off-path 

beliefs can prevent player 1 from obtaining the payoff he would most prefer.  Schmidt 

[1993] gives an example of a perfect Bayesian equilibrium in which player 2's inability to 

learn the strategy played off the equilibrium path prevents player 1 from achieving the 

payoff he would get with a public committment.  Schmidt's example is based on the 

presence of a "perverse" type who uses a history-dependent strategy, and is 

indistinguishable from the "good" commitment type along the equilibrium path.  Cripps, 

Schmidt, and Thomas [1993] show that the perverse type is not required if we consider 

only Nash equilibria.  Their Theorem 3 applies to games with observed actions where the 

patient player is either "normal" or plays an arbitrary finitely-complex strategy.  It shows 

that there is a Nash equilibrium where player 1's payoff is not substantially above the 

most he could obtain by playing a constant action, with player 2 choosing the individually 

rational response to this action that player 1 likes least.   

 Finally, we should acknowledge that Aoyagi [1994] independently obtains a result 

similar to ours for the case where player 1 maximizes his time-average payoff while 

player 2 discounts.  Aoyagi’s paper differs in interpreting the noise as “trembles,” and, 

more signifcantly, in considering a more complex class of “commitment types” that may 

be empty in some games, but the basic intuition for his results is the same. 

 To illustrate an application of our theorems, as well as how they differ from the 

bounds of Cripps, Schmidt and Thomas, we examine a version of the Prisoner's Dilemma. 

It should be noted that the bound developed by Schmidt [1993] and by Cripps, Schmidt 

and Thomas [1993] does not imply any restriction on the Nash equilibria of this game:  

the best player 1 can get while minmaxing player 2 is his own minmax.  We start with a 

traditional prisoner's dilemma. 

 

 C D 

C 1,1 -1,2 

D 2,-1 0,0 
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We add incomplete observability, by supposing that if a player chooses a particular action 

then there is a small chance that the realized action will be different. In particular suppose 

that conditional on choosing action C (or D) the realized action will be C (D) with 

probability 1− ε  and D (C) with probability ε .  For this example a simple calculation 

shows that the greatest socially feasible payoff for player 1 that gives player 2 at least the 

minmax is 3 2 2/ − ε .  Our results imply that if the short run player is patient, then a 

patient long run player will receive a payoff close to 3/2 in every Nash equilibrium of this 

prisoner's dilemma. (Note that this payoff can be achieved if player 2 always chooses C 

and player 1 alternates between C and D.) 

2. The Model 

 We consider a repeated game between two players, player 1 (the patient player) 

and player 2 (player 2).  We denote by A A1 2,  the finite (pure) action sets of the two 

players in the stage game with generic elements a a1 2, , and use α α1 1 2 2∈ ∈� , �A A  for mixed 

actions.  We denote by A A, �  the corresponding spaces of profiles.  At the end of each 

period t = 1 2, ,� players commonly observe a stochastic outcome drawn from a finite set, 

y Y∈ .  The probability distribution over outcomes depends on the action profile and is 

given as ρ( )y a ; for mixed actions ρ α( )y  is defined in the obvious way. 

 Player 1  can be one of countably many types ω ∈Ω .  These types are drawn from 

a common knowledge prior µ  assigning positive probability to all points in Ω .  Player 1  

is informed of his type before play begins, but this is purely private knowledge and is not 

revealed to player 2.  We focus on a particular type ω0 ∈Ω , which we refer to as the 

rational type. 

 Stage game payoffs are u a y1 1( , )  for the type ω0  patient player and u a y2 2( , )  for 

player 2.  It is also useful to define normal form payoffs by 

u a u a y y ai i iy
( ) ( , ) ( )≡� ρ  

with ui ( )α  defined in the obvious way.   

 In the repeated game the type ω0  patient player seeks to maximize the average 

present value of utility using the discount factor δ1, while player 2 uses the discount 

factor δ2 .  Types of player 1  other than type ω0  have von Neumann-Morgenstern 
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preferences over sequences of player 1  actions and public outcomes, but these are not 

necessarily representable in a time separable form. 

 A type behavior strategy for player 1  or a behavior strategy for player 2 specifies 

a time indexed sequence of maps from private (for that player) and public histories to 

mixed actions (for that player).  We denote these by σ1 and σ2  respectively.  We also 

define ui
t ( , )σ σ1 2  to be the corresponding period t expected utility. Finally, a behavior 

strategy for player 1  specifies a map from types to type behavior strategies.  A Nash 

equilibrium is a behavior strategy for each player such that given the opponent's behavior 

strategy, no other behavior strategy yields a distribution over time sequences of actions 

(for that player) and public outcomes that is preferred to that in the proposed equilibrium.  

It is quite easy to show by taking limits of finite truncations of this infinite game that 

Nash equilibria exist.7 Let N1 1 2( , )δ δ  denote the least (inf) expected payoff to player 1  

conditional on type ω0  in any Nash equilibrium.   

 Say that a type behavior strategy for player 1 has bounded recall if there exists a 

number N  such that play at time t  is entirely determined by the history between t N−  

and t −1.  A type of player 1  whose preferences make the type behavior strategy σ1  

strictly dominant is called committed to that strategy, and we write the type as ω σ( )1 . 

 We make four key assumptions. 

Assumption 1:  If σ1 is pure bounded recall then ω σ( )1 ∈Ω , that is, it has positive 

probability. 

Assumption 2:  If ρ α α ρ α α( , ) ( , )⋅ = ⋅ ′1 2 1 2 , then α α1 1= ′ . 

Assumption 3:  The support of ρ α( )⋅  is independent of α2 . 

Define the (pure strategy) minmax for player 2: 

u u aa a2 21 2
≡ min max ( ). 

Assumption 4:  There exists a pure profile a  such that u a u2 2( ) > . 

 Assumption 1 ensures there are “enough” “irrational” types. (Since the set of 

bounded-recall strategies is countable this is consistent with our restriction to a countable 

                                                 
7 See, for example, Fudenberg and Levine [1983]. 
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number of types.)  Assumption 2 is from Fudenberg and Levine [1992] who call it 

identifiability:  it means that regardless of the play of player 2 there is enough statistical 

information revealed by the outcomes to determine the action of player 1.  If it fails, 

player 2 may play an action that precludes him from learning what stage-game action 

player 1  is playing,  preventing  player 1  from developing a reputation, even when if 

player 2 is myopic . Note that the assumption is satisfied if player 1’s actions are perfectly 

observed, as in the previous papers on reputation effects with two long-run players.  

 Assumption 3 is the substantive assumption:  It says that player 2 cannot 

determine the set of possible outcomes through his own action.  If he could, then there are 

many counterexamples to the theorems below.  Note that this assumption does not require 

that player 1’s action be imperfectly observed, and indeed, whether player 1’s action is 

observed or not is irrelevant. 

 Assumption 4 says that there is a profile that is better for player 2 than the pure 

strategy minmax payoff.  If we used mixed strategies in place of pure, this would be a 

mild non-degeneracy condition:  failure would mean that the indifference of player 2 

might well make him immune to threats by player 1 .  We restrict attention to the pure 

strategy minmax in order to avoid the complications involved in maintaining a reputation 

for playing a mixed strategy.8  The existence of a profile better for player 2 than the pure 

strategy minmax does rule out some interesting games, but the assumption is satisfied in 

other games of interest, such as the prisoner’s dilemma and the battle of the sexes.. 

 Before analyzing reputation in our model, we calculate as a benchmark how much  

player 1  might hope to get by precommitting.  First we define a set of payoffs for player 

1.  This set has the feature that these payoffs can be approximated by  profiles in a finitely 

repeated version of the game, in which player two’s repeated game strategy is a best 

reponse to player 1’s in a finite truncation of the game. 

                                                 
8 These complications were addressed in the context of a myopic player 2 in Fudenberg-Levine [1992].  The 
restriction is largely a matter of technical convenience:   for player 1  to develop a reputation for mixed 
strategy punishments it would be necessary to allow a continuum of types.  Working with a continuum of 
types increases the complexity of the notation substantially 
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Definition 1. v V1 1 2∈ ( )δ  iff for every ε >0 there is an  N and a pure strategyσ1
N  in the N-

fold  repeated game such that if σ2
N  is a best response of player 2 with discount factor δ 2  

in the N-fold repeated game then  ( / ) ( , )1 1 1 2
1

1N u vt N N

t

N

σ σ ε
=
� ≥ −  . 

Through precommitment (to a pure strategy) a patient player can guarantee himself 

v V1 2 1 2( ) sup ( )δ δ= .  Because we restrict attention to pure strategy commitment types, the 

worst punishment that player 1 can hope to “teach” player 2 to fear is the pure-strategy 

minimax; this restriction on punishments can result in a lower maximum payoff for 

player 1 than if mixed punishments were considered . 

3.  An Impatient Less Patient Player 

 Our main result is 

Theorem 1:  Suppose that Assumptions 1-3 hold.  Then liminf ( , ) ( )δ δ δ δ
1 1 1 1 2 1 2→ ≥N v . 

In other words, if player 1  is very patient then he gets nearly as much in any Nash 

equilibrium as the greatest amount consistent with the short run player choosing a best 

response in a finite truncation of the game. 

 The idea is that if player 1  commits to an appropriate  bounded recall strategy and 

player 2 plays a best response to it then player 1 gets a payoff very close to the  lower 

bound given above. Note that since the strategy has  bounded recall there are types of 

patient player who play these strategies regardless of the history.  In the usual reputational 

story, this would mean that if player 1  plays one of these review strategies, player 2 must 

either play a best response to it, or come to believe that he faces a committed type.  The 

situation here is complicated by the need to show that player 2 can learn the punishment 

strategy of player 1  without deviating:  this is where assumption 3 comes in.  

 We proceed via several lemmas.  Our initial focus is on the response of player 2 to 

these strategies in the N-fold repeated game. 

Lemma 1:   For every η > 0 there exists an N , ,δ ε1 1 0< >  and pure type strategy for 

player 1  in the N-fold repeated game σ1
N  such that if  1 1 1> ≥δ δ  and player 2 plays a ε -

best response to σ1
N  the payoff to type ω0   player 1  is at least v1 2( )δ η− . 
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Proof: By definition, we can choose an N so that for some σ1
N  and for all σ2

N  which are a 

best response to σ1
N  in the N-fold repeated game we have  

(*)   ( / ) ( , ) /1 31 1 2
1

1N u vt N N

t

N

σ σ η
=
� ≥ −  

Moreover, since the ε -best response correspondence is upper hemi-continuous in ε , we 

may choose an ε  so that ( / ) ( , � ) /1 2 31 1 2
1

1N u vt N N

t

N

σ σ η
=
� ≥ −   for all ε -best responses �σ2

N .  

Moreover, we can choose δ1 1<  so that for all σ 2
N  (best response or not) 

|( / ) ( , ) ( ) ( , )| /1 1 31 1 2
1

1 1
1

1 1 2
1

N u ut N N

t

N
t t N N

t

N

σ σ δ δ σ σ η
=

−

=
� �− − < . q 

If σN  is a profile consisting of a patient player type behavior strategy and a less patient 

player strategy in the N-fold repeated game, let p N( )σ  be the probability distribution over 

N-length sequences of public outcomes induced by ρ .  Notice that this is a finite vector.  

Lemma 2:  For any ε > 0, N  there exists a γ > 0  such that in the N-fold repeated game if 
p pN N N N( , ) ( � , )σ σ σ σ γ1 2 1 2− <  and σ2

N  is a ε -best response by player 2 to σ1
N  then it is a 

2ε -best response to �σ1
N .9 

Proof:  We identify type behavior strategies by player 1  that differ only at information 

sets that are unreachable given that strategy.  It is sufficient to show that 

p pN N N N( � , ) ( , )σ σ σ σ1 2 1 2→  implies �σ σ1 1
N N→ .  This in turn will follow if p N( , )⋅ σ2  has a 

continuous inverse.  Since the domain of p N( , )⋅ σ2  is compact, the image of a closed set is 

closed, so it suffices to show that p N( , )⋅ σ2  is continuous and 1-1.   Continuity is obvious.  

Suppose in fact that   p pN N N N( � , ) ( , )σ σ σ σ1 2 1 2= , but that σ σ1 1
N N, �  are not equivalent.  Let 

( , , )h h h1 2  be a triple consisting of a public and private histories (of the same length) 

possible under σ1
N  such that ~ ( , ) ( , )σ σ1 1 1 1

N Nh h h h≠ .  By Assumption 2 it follows that 

ρ σ σ ρ σ σ(~ ( , ), ( , )) ( ( , ), ( , ))1 1 2 2 1 1 2 2
N N N Nh h h h h h h h≠ .  Since h has positive probability under 

σ1
N  for some �σ2

N  by Assumption 3 it has positive probability under σ σ1 2
N N,  (and by 

hypothesis the same probability under �σ σ1 2
N N, ).  This contradicts 

p pN N N N( � , ) ( , )σ σ σ σ1 2 1 2= . q 

                                                 
9 The norm  may be taken to be ordinary Euclidean distance, where the probability distribution over a 
finite set p( )⋅  is viewed as a vector. 
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 We will refer to the N-fold repeated game as the superstage game.  Fixing a 

strategy for all types of more patient player, let M K( )  be the finite set of probability 

distributions over types of more patient player that can be generated by Bayesian updating 

with no more than K observations of more patient player play. 

Lemma 3:  Suppose the more patient player strategy in the infinitely repeated superstage 

game is such that type ω0   plays σ1
N  in each  superstage game.  In any of the superstage 

games, let � ( ')σ µ1
N  be the conditional probability of different pure strategies according to 

the beliefs of player 2, when his prior beliefs over more patient player types is µ'.  For 

every λ γ> >0 0, , K   there is an L  such that if µ' ( )∈ M K  the probability is less than λ  
that there are more than L  superstage games with p pN N N N( , ) ( � ( '), )σ σ σ µ σ γ1 2 1 2− ≥ . 

Proof:  This is a restatement of Theorem 4.1 in Fudenberg and Levine [1992]. q 

Proof of Theorem 1:  For any number η > 0 we may choose N , ,δ ε1 1 0< > ,σ1
N  so that  

Lemma 1 is satisfied for the tolerance η / 4. 

 The idea is to consider what happens when the more patient player repeatedly 

plays σ1
N  and player 2 plays a best response.  Our conclusion follows by demonstrating 

that the more patient player is more patient than δ1 he gets at least v1 2( )δ η−  .   

 To analyze the best response of player 2, we fix any number µ  so that 

δ ε δµ
2 2 2 21 4N u u(max min ) ( ) /− < − .  We refer to the game consisting of µ  repetitions 

of the superstage game (and µN  repetitions of the stage game) as the superduperstage 

game.  Apply Lemma 2 to any superduperstage game where the tolerance is ε δ( ) /1 22−  

to find a value for γ . Apply Lemma 3 to the repeated superduperstage game using this 

value of γ  as the tolerance level for beliefs, choosing the probability λ  that this tolerance 

level is exceeded to be such that λ η(max min ) /u u1 1 4− < , and choosing K N= µ .  We 

refer to superduperstage games in which the tolerance is exceeded as anomalous. 

 Player 2 is playing at worst an ε δ( ) /1 22−  best response to his beliefs in the 

superduperstage game, since δ ε δµ
2 2 2 21 4N u u(max min ) ( ) /− < − .  By Lemma 2 (except 

in the anomalous case) player 2 is playing an ε δ/ ( )1 2−  best response to the µ -fold 

repetition of σ1
N .  Consequently, player 2 is playing an ε -best response to σ1

N  in the first 

of the superstage games of the superduperstage game.  By Lemma 1, in the first of the 
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superstage games of a non-anomalous superduperstage game player 1  gets at least 

v1 2 2( ) /δ η− .   

 Taking account of the probability λ   that there are more than L anomalous 

superduperstage games and the probability 1− λ that there are less than or equal to L , we 

conclude the more patient player gets an expected average present value of at least 

δ δ η δµ µ
1 1 2 1 13 4 1NL NLv u( ( ) / ) ( ) min− + −  in all first stages of all superduperstage games 

combined.    

 Now consider the infinitely repeated game beginning in any period 

κ κ µN + ≤ ≤ −1 1 1, .  This is identical to the game that begins in period 1, except that 

the prior of player 2 may have changed.  We may organize this game also into superstage 

and superduperstage games, and since Lemma 3 applies to all priors reachable during 

periods up to µN  the previous argument shows that the more patient player receives an 

expected average present value of at least  δ δ η δµ µ
1 1 2 1 13 4 1NL NLv u( ( ) / ) ( ) min− + −  in the 

first stages of these superduperstage games.  However, the first stage of one of the 

superduperstage games in the game beginning in period κN +1 is stage κ  of one of the 

superduperstage games in the game beginning in period 1, so we average over all stages 

of the superduperstage games beginning in period 1 to conclude that the more patient 

player receives an expected average present value of  
δ δ η δµ µ

1 1 2 1 13 4 1NL NLv u( ( ) / ) ( ) min− + −  for the entire game.   Letting δ1 1→  now gives 

the desired result. q 

4.  A Patient Less Patient Player 

 We now investigate what happens as δ2 1→ . Our second theorem shows that if 

we consider a patient less patient player then player 1  can essentially achieve a payoff 

that is equal to the maximum he can get while giving player 2 his minmax payoff.  Note 

that this bound is derived by taking a particular order of limits. First, we derive a lower 

bound on player 1 's payoff, when this player is arbitrarily patient. Then we ask how this 

bound behaves as also player 2 becomes very patient. Implicit in this construction is that 

player 1  is always infinitely more patient than player 2. (If we reverse the order of limits, 

then the result does not hold.)   
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 Let  V *  denote the convex hull of feasible payoffs that are at least as great as the 

pure strategy minmax.  By  V1
*  we denote the projection of  V *  onto the payoffs of player 

1. 

Theorem 2:  Suppose Assumptions 1-4 hold. Then  

liminf liminf ( , ) max *
δ δ δ δ

2 11 1 1 1 2 1→ → ≥N V  

Before turning to the proof, it is worth noting that if we allowed types of player 2 as well 

as types of patient player, this result would remain valid, and the proof of this result (and 

Theorem 1 from which it follows) would involve only notational changes.  However, we 

cannot turn the theorem around and use the fact that there are types of less patient player 

to find a bound on his payoffs similar to that for player 1 :  the validity of Theorem 2 

depends crucially on the order of limits.  As we make player 2 increasingly patient, 

Theorem 2 allows (and in fact requires) us to make player 1  even more patient. 

 Note also that the definition of V *makes use of the pure strategy minmax.  As was 

argued in Section 2, we only allow player 1  to establish a reputation for pure strategy, 

since allowing him to establish a reputation for mixed strategy punishments would 

require the existence of a continuum of types that would make the notation significantly 

heavier. Our pure strategy definition implies that max *V1  is the largest socially feasible 

and individually rational payoff for player 1 , if player 2's pure strategy minmax payoff is 

equal to his mixed strategy minmax payoff.  If we allowed a reputation for mixed 

strategies, we could use the usual socially feasible individually rational set, and replace 

the inequality  in Theorem 2 with an equality. 

 The proof of Theorem 2 is an immediate consequence of Theorem 1 and the 

following Lemma. 

Lemma 4. For any v v v= ( , )1 2  with v V∈int * there is a δ 2  such that for δ δ2 2>  

v V1 1 2∈ ( )δ . 

Remark: We should emphasize that this lemma concerns the complete information 

game, where reputation plays no role. The lemma is thus more closely related to the 

literature on repeated games than to that on reputation effects, and indeed our proof uses 

"review strategies" of the sort introduced in Radner's [1981], [1985] study of repeated 

agency games, and subsequently used in a number of papers on the folk theorem in 
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repeated games. Despite this close link to the repeated game literature, the lemma we 

need does not seem to be a direct consequence of previous work, so we give a complete 

proof here. 

Proof:   Given  v v v= ( , )1 2  with v V∈int * let 
� � �
a a a N

1 1
1

1= ( ,..., )  be a sequence of actions by 

player 1 such that there is a sequence of actions for player 2 such that in the N-times 

repeated game the expected average payoff of player 1 is larger than v1 2− ε /  and the 

expected average payoff of player 2 is larger thanv2 . (Clearly for N sufficiently large such 

a sequence exists.)  

 Consider the KMN-fold repeated game in which player two has the time average 

payoff as a payoff function. In the following we call each MN-fold repetition of the game 

a superstage game, and hence we consider a K-fold repetition of the superstage game. 

Denote by 
�� � �
a a a1 1 1= ( ,..., )  the sequence of M repetitions of

�
a1. Let a1  be a (pure) action of 

player 1  that minmaxes the payoff of player 2 in pure strategies.  Further, let uk
1  denote 

player 1's average payoff in the k-th superstagegame. 

 Let 
��σ1  be the following strategy: in the first superstage game, player 1  chooses

��

a1.  

In the second superstage game, ifv u1 1
2 2− − <ε η/ , then player 1  again chooses 

��

a1 and so 

on. If for any superstage game, v uk
1 1 2− − >ε η/ , then player 1  plays action a1  for the 

next P repetitions of the superstage game. 

 Claim: Givenε > 0 there are numbersη , K, N, M, and P with P K/ < ε  such that 

for any (time average) best response 
��σ2  to 

��σ1   

(i) prob v uk{ }1 1 1− < > −ε ε for all superstage games k K P= ,..., -1  for which player 1 

chooses 
��

a1 (i.e., for all superstage games for which player 1 does not use his punishment 

strategy.) 

(ii) the fraction of superstage games in which player 1 uses his punishment strategy is 

smaller than ε  with probability ( )1− ε .   

 Assuming for the moment the truth of the claim, a straightforward upper hemi-

continuity argument shows that the claim remains true if 
��σ2  is discounted best response 

with δ2  sufficiently close to 1.  Moreover, the claim implies that the average payoff to 

player 1  in the KMN-fold repeated game is greater than v C1 − ε  where C is a positive 

constant independent of ε .  This is the desired result.  
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 To demonstrate the validity of the claim, first chooseη ε β< +2 1/ ( ) , where β  is a 

fixed constant whose computation is described below.   

 Denote by Euk
1  the expected payoff of player 1 in superstagegame k. Given K and 

η  we can choose M sufficiently large, so that  

(a) if v Euk
1 1 2 2− − >ε η/  in any superstage game then punishment occurs with 

probability greater than ( )1− η ;  

(b) if v Euk
1 1 2− − <ε η/  for all k, then the probability that no punishment occurs in any 

superstagegame is larger than ( )1− η . 

 Note that the utility loss from a punishment is bounded below by ( )v u P2 2− , 

(v u2 2 0− > ), whereas the gain from a deviation is bounded above byu u2 2− , where u2  is 

the largest attainable payoff for player 2 in the stage game. Thus for appropriate choice of 

P we have  

(*)                  v Euk
1 1 2 2− − <ε η/  

in all of the first K P−  superstage games for any best response of player 2 and hence part 

(i) of  the claim follows. 

 Now we establish part (ii) of the claim.  Suppose to the contrary that  player 2's 

(optimal) strategy triggers a punishment in more than an ε  fraction of the first K P−  

superstage games with probability greater thanε .  We claim that this implies that a 

profitable deviation exists. Suppose player 2 deviates so that v Euk
1 1 2− − <ε η/  for all 

k=1,..., K P− . Since  (*) has to be satisfied in every superstagegame k K P= −1,...,  this 

deviation can be chosen so that the loss in every superstagegame is bounded above by ηB  

(where B is a constant that depends only on the payoff matrix). Note that (after the 

deviation) the probability that a punishment occurs in any superstagegame is smaller 

thanη . Thus player 2 also improves his average payoff over the first K P−  superstage 

games by at least ( )( )ε η2
2 2− − ⋅v u P  by reducing the probability of punishment.  

Consequently, if we choose β = − ⋅B v u P/ ( )2 2  player 2 gains from the deviation and part 

(ii) of the claim follows.  � 
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5. An Example 

SAVING FN10   

This example thus shows that the conclusion of theorem 1 below fails with perfectly  

observable actions, even if the equilibrium concept is strengthened.11    

SAVING FN12 

 

  

                                                 
10 Although sequential equilibrium has not beed defined for infinite games, in the finitely repeated versions 
of  the two-types example considered here perfect Bayesian equilibrium (PBE) and sequential equilibria 
coincide (Fudenberg-Tirole [1991] We use the simpler  PBE concept because its conditions on beleifs are 
easier to check.  
11 However,  since for a fixed δ 2  the example requires an upper bound on the probability that 1 is the 
commitment type,   it  is not a counterexample to the strengthened version of  theorem 2.   
12 Moreover this example is robust to small changes in payoffs, and 1 cannot obtain the Stackelberg payoff 
by commitment to a mixed strategy.  We thank a referee for finding an error in a previous example, and for 
encouarging us to find a robust example. 
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