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Abstract:  We consider an application of the stock flow model of intertemporal
preference to the problem of strategic “learning about learning” with the best response
dynamic. We show that when players are myopic, but not as in the usual analysis
completely so, that we can find an approximate solution that is “implementable” in the
sense that it does not require solving an equilibrium system.  Paradoxically, in the steady
state, this increase in patience and sophistication by the players generally lowers their
utility.
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1.  Introduction

In 1954, Robert W. Clower, then an assistant professor at the State College of

Washington, Pullman, published a paper in the American Economic Review on the

dynamics of investment.  This article modeled demand for the stock of capital and the

flow of investment as jointly depending on the price of capital.   From the more current

viewpoint this “stock-flow” dynamic was based on a utility function that depends both on

the stock of capital and the flow of investment.  Current orthodoxy largely rejects this

point of view, emphasizing the dependence of utility on all future stocks (or at least the

corresponding consumption flows) and prices.  However, the actual dynamics of a

modern dynamical model can often be reduced to a simple difference equation in the

current and next period capital stock, so that the basic features of the investment

dynamics discussed by Clower in 1954 are still largely viewed as valid.

There is, however, another viewpoint on why utility might depend both on a stock

and a flow: that is because in a world of boundedly rational agents, the flow may be a

good proxy for future levels of the stock.  (This seems to be the idea in the original work

on stock-flow analysis.)  In the research reported here, we take that idea seriously to

attack one of the most difficult issues in the theory of learning in games: the problem of

players learning about each other learning.

In most research on learning (or evolution) in games, it is explicitly or implicitly

assumed that players are myopic.  Often this is justified by assuming that players meet to

play in a large population so that they have little influence on the future.  With this

assumption the impact of a player on his opponents’ learning does not matter because it

effects only their future play, about which he does not care.  However, in strategic

interactions such as repeated play, myopia is not a sensible assumption.  Once we drop
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that assumption, however, players can have an impact on the future play of their

opponents, and potentially they can learn about this at the same time their opponents are

learning about them.

To attack the issue of learning about learning, it is necessary to model players who

are not myopic, that is who care about, have an impact on, and can learn about their

impact on the future.  As a simple model of bounded rationality, we reintroduce the stock

flow model, assuming that players care not only about the level of utility (as in the

myopic model) but also on the rate of change of utility.  We then see how the problem of

one player learning about another player learning about that player learning leads to an

infinite recursion that can be solved only by an equilibrium theory very much against the

spirit of the theory of learning.  This dilemma of needing equilibrium theory to solve a

disequilibrium model is one of our major concerns.

We do not propose a general solution to the dilemma of needing equilibrium

theory to solve a disequilibrium model.  However, in the special case of small departures

from myopia, there is a useful theory; that is, the case in which players are somewhat

patient but not terribly patient leads to a simple and sensible theory.  In this case the

learning about learning about learning is of second order importance, and we can neglect

it.  Roughly, players learn how they effect the level of utility and how they effect their

opponents learning about the level of utility, but not how they effect their opponents

learning about their learning about the level of utility, because this is of much less

significance. In the case of a small departure from myopia, in other words, we may

usefully introduce an approximation by cutting off the recursion after a finite number of

steps.
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What happens when we cut off the recursion after a finite number of steps? The

resulting description of the dynamic interaction between players is a simple variation on

the best-response dynamic.   The stability theory is much the same as in the myopic case.

Of greater interest are how the statics are changed by introducing a small amount of

foresight: As an application of the theory, we study conditions under which increasing

foresight (improving rationality as it were) can lead to either increases or decreases in

welfare.

Paradoxically, we conclude that in the “usual” case increasing foresight (or

rationality) will typically lower the utility of all players.  By trying to control the learning

of other players about their own play, players will typically be led to undertake actions

even more inefficient than the static Nash equilibrium.
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2.  The Model

We wish to examine the behavior of players who have limited foresight, but are

not completely myopic.  We focus on the simplest setting in which it is possible to study

this issue.  Our setting is that of a simultaneous move n person game in which each player

i controls an action xi ∈[ , ]01 .  The profile of actions by all players is denoted by x.  The

assumption that actions are continuous is important because we will need opposing

players actions to adjust continuously in order to introduce extrapolation; the assumption

that they are one-dimensional avoids complications in distinguishing between different

learning models such as those that give rise to the replicator, and fictitious play.  One

interpretation, but not as we shall see the most interesting, is that the action is a

probability of playing one of two pure strategies.  Whether xi  is actually observed is left

deliberately vague, as the level of abstraction in the modeling is such that it makes no

formal difference.  However, conceptually, it is useful to think of xi  as observable only

indirectly through a noisy proxy.

The flow of utility received by player i at a moment of time is denoted by u xi( ) ,

and reflects the entire profile of player actions.  We assume that ui  is a smooth function.

In the mixed strategy case (with two pure actions) ui  is linear in each argument.  It is

useful to recall at this point the continuous time best response dynamic.  This says that

each player’s action is continuously adjusted in the direction that increases utility:2

& ( )x D u xi i i= .

                                                
2 It is possible also to include a multiplicative rate of adjustment parameter, but it is equally easy to imagine
that the rate of adjustment is incorporated directly into utility.
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Because each player controls only a single action, this dynamic is the same as the

replicator dynamic from evolutionary game theory.  It satisfies both the myopic property

examined by Swinkels [1993] and the convex monotonicity of Hofbauer and Weibull

[1995].  Basically, with a single action per player, any sensible model of learning in

continuous time must have the property that each individual player moves in the direction

of increasing utility.  If we allow each player to control several actions, the situation is

more ambiguous, and this issue is largely irrelevant to the discussion here, and is

discussed at some length, for example, in Fudenberg and Levine [1996].

The crucial feature here is that actions adjust only gradually to the optimum (in

contrast to the discrete time best response dynamic, where they adjust all at once).   This

is a commonly assumed feature in models of learning and evolution, such as for example,

Kandori, Mailath and Rob [1993], Young [1993], and so forth.  There are two basic

justifications for this model, depending on whether we interpret xi  and an individual

strategy (mixed perhaps) or a population aggregate.  The most common model is the

“evolutionary” model of a population aggregate, but we are interested in the ability of one

player to learn about other players learning about him, and this is not relevant in a large

population.  When xi  is interpreted as an individual strategy there are two basic learning

models that give rise to this type of gradual adjustment: the fictitious play model and the

stimulus response model of Borgers and Sarin [1994] or Er’ev and Roth [1994].  For

more discussion of the connection between these models see Cheung and Friedman

[1994] or Fudenberg and Levine [1996].  In fictitious play response is gradual because the

state variable is a time average that can adjust slowly.  However, this model is appropriate

in the current setting only in the case in which xi  is a mixed strategy; with a continuous

action space, we cannot identify a state variable consisting of opponents average past
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frequency of play with the opponents action.   In the stimulus response model, it is simply

assumed on the basis of observed behavior that adjustment to stimuli is gradual.  This is

the model most suitable to the current setting.

The simple best response dynamic implicitly assumes that player care only about

the flow of utility.  In an economic setting, they ought to care not about the flow of utility

but the stock, or average present value of utility ρ ρu t e dti
t( ) −∞I0 .  Let v xi( )  denote player

i’ s perception of the average present value of utility at the current profile of actions.3

Then the corresponding best response dynamic is

& ( )x D v xi i i= .

If players are ignorant of opponents’ future play, how can they compute average present

value?   If they are boundedly rational, one way to do this is to extrapolate opponent’s

current play.  The most naïve form of extrapolation is to assume that opponent’s future

play will remain fixed at the current level.  Then

v x u x e dt u xi i
t

i( ) ( ) ( )= =
∞ −Iρ ρ
0

.

This leads to the standard best response dynamic introduced above.

Alternatively, if players are a bit more sophisticated, they may extrapolate not

only current levels of utility, but also rates of change.  This leads to

v x u x D u x x t e dt

u x D u x x

i i j i jj i
t

i j i jj i

( ) ( ) ( ) &

( ) ( ) &

= +

= +
≠

∞ −

−
≠

∑I
∑

ρ

ρ

ρ
0

1

                                                
3 Implicitly we are assuming that players are using strong Markov strategies, that is, that each player choose
actions depending only on the current profile so that it indeed sensible to make inferences about future play
of opponents based on these levels.
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Note that we omit player i’ s own action from the rate of change calculation, since this is

under his own control.4  If the discount factor ρ−1  is low enough, then this is also the

same as the standard best response dynamic above, which is one reason that play in the

standard best response dynamic is called “myopic.”  Notice also that this model is the

“stock-flow” model: a player has utility that depends both on a stock x  and on a flow &x .

This formulation is more primitive than that studied by Clower [1954], because utility

here is necessarily linear in the flow.  Our plan of research in this paper is to study this

stock-flow model in the case in which the discount factor ρ−1  is not zero, but is relatively

small, to discover what changes in the conclusions of the standard best

response/replicator dynamic result.

                                                
4 This is not exactly an application of the maximum principle, since we are not dealing with an optimization
problem, but it is easy to check that if we include player i’ s own rate of change in this equation, we may
solve for approximately the same equation written here.
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3.  An Approximation

The basic equation of motion is

& ( ) ( ) ( ) & ( ) &x D v x D u x D u x x D u x D xi i i i i ij i j j i i jj i
= = + +-

¡
Ír 1 .

The key fact is that the right hand side of the equation for &x  depends on both &x  and its

derivative with respect to the levels of actions.  That is, this system is in effect an

equilibrium system, since player i’ s adjustment depends on player j’ s adjustment.  When

we calculate out the derivative of &x

D x D u x D D u x x D u x D xk i ki i k ij i j j i i jj i
& ( ) ( ) & ( ) &= + +−

≠∑ρ 1

we see that mathematically this system is a system of partial differential equations

determining in equilibrium the unknown function &( )x x .

In general this system of partial differential equations is quite difficult to study, as

well as posing the conceptual problem about whether it makes sense to solve an

equilibrium system in order to study disequilibrium behavior.  However, when the

discount factor ρ−1  is small, so that players are myopic, but not completely so, it is

possible to find an approximate solution to this system that also solves many of the

conceptual difficulties.  Basically this approximation comes from truncating the recursion

of learning about learning after a finite number of stages.  Specifically, if we substitute

the expressions for &, &x Dx  back into the expression for &x , we drop the terms of order ρ−2

which correspond to learning about learning about learning, but keep the terms of order

ρ−1  which correspond to learning about learning.  If in fact ρ−1  is sufficiently small, this

will be  a good approximate solution to the partial differential equation system.

Specifically, we compute
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& ( ) ( ) ( ) & ( ) & ( )x D v x D u x D u x x D u x D x D u xi i i i i ij i j j i i jj i i i= = + + £-

¡
Ír 1

D x D u x D D u x x D u x D x D u xk i ki i k ij i j j i i jj i ki i& ( ) ( ) & ( ) & ( )= + + ≈−
≠∑ρ 1 .

If we then substitute into the expression for &xi  these approximations, we find the

approximate solution

& ( ) ( ) ( ) ( ) ( )x D u x D u x D u x D u x D u xi i i ij i j j j i ij jj i
≈ + +−

≠∑ρ 1 .

This system of dynamical equations is not the solution to an equilibrium system;

rather each player correctly anticipates the impact he will have on his opponents’ myopic

learning (that is, learning about levels), but not the impact he will have on his opponents

sophisticated learning.  This is consistent with the idea of bounded rationality.  This

system is an approximate solution to the original system of partial differential equations

in the sense that if the higher derivatives of ui  are all bounded, then the error when we

substitute this “solution” into the original system is of order ρ−2 .

Note that in the one player case we have

& ( )x D u xi i i=

which is the ordinary continuous time best-response dynamic.  The control variable is

adjusted upwards in the direction of increasing utility; steady states correspond either to

maxima or minima of the utility function, and only maxima are stable.  Note also that this

is essentially the same dynamic studied in the traditional stock/flow investment model

introduced in Clower [1954].
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4.  Review of the Myopic Case

In the limiting case of a zero discount factor ρ− =1 0 , we have the perfectly

ordinary continuous time best response dynamic

& ( )x D u xi i i= .

Steady state of this system satisfy & ( )x D u xi i i= = 0  and correspond exactly to Nash

equilibria of the static game provided that utility is concave in each player’s own action,

that is, D u xii i ( ) < 0 .

This system may converge to a steady state or may cycle, or even  exhibit chaotic

behavior.  If we focus on interior equilibria (in case xi  is a mixture over two pure

strategies, this corresponds to a completely mixed equilibrium), then the condition for

dynamic stability is that the eigenvalues of the matrix

D u xij i i j n
( )

, ,=1K

should have negative real parts.  In the special case of xi  a mixture over two pure

strategies D ui i  does not depend on xi  since ui  is linear in xi , so the diagonal of

D u xij i i j n
( )

, ,=1K
 is zero, and so the matrix has zero trace.  It follows that in this case that

the steady state cannot be both stable and hyperbolic.
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5.  Steady State Analysis in the Symmetric Case

To more clearly understand the dynamics resulting from learning about learning,

observe first that as ρ−1  goes to zero, so we approach the myopic case, steady states of

the system will approach those of the myopic system.  Moreover, if the steady states of

the myopic system are hyperbolic, so robust to perturbations, then the stability properties

of steady states will approach those of the myopic system.  The interesting question,

therefore, lies in knowing in what direction the steady state will move due to learning

about learning.  To understand this more clearly, we focus on the symmetric case.

In the case in which all players are identical, including in initial condition, the

dynamic system can be simplified to a single dimensional dynamical system

& ( ) ( ) ( ) ( ) ( ) ( )x D u x n D u x D u x D u x D u xi i i i ij i i i i i j i i ij i i≈ + − +−r r r r rρ 1 1

where 
r

Kx x x xi i i i= ( , , , ) , and j is any index not equal to i.   At a steady state $ ( )xi ρ−1 ,

&xi = 0 .   We may differentiate this condition to find

D x D u x n D u x n D u x D u xi ii i i ij i i j i i ij i iρ $ ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1
1

= − + − −
−r r r r

.

To understand better what this means, consider how utility of a player changes if

all players increase their action

Du x D u x n D u xi i i i i j i i( ) ( ) ( ) ( )
r r r= + −1 .

Making use of the condition at a myopic equilibrium that D u xi i i( )
r = 0 , this may be

written as

Du x n D u xi i j i i( ) ( ) ( )
r r= −1 .
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Combining this with the previous result, we can find the change in utility with respect to

a small change in the discount factor ρ−1  away from zero Du x D xi i i( ) $ ( )
r

r
0 . Consequently,

steady state utility will increase if

− + − >
−

D u x n D u x D u xii i i ij i i ij i i( ) ( ) ( ) ( )
r r r

1 0
1

,

and decrease otherwise.

Next, we should focus attention only on steady states that are stable, and in

particular are stable in the myopic case.  Since the myopic dynamic is

& ( )x D u xi i i i= r

the corresponding stability condition is Dxi& < 0, or

Dx D u x n D u xi ii i i ij i i& ( ) ( ) ( )= + − <r r
1 0 .

It follows that small changes in the discount factor ρ−1  away from zero will increase

steady state utility near a stable steady state if

D u xij i i( )
r > 0 ,

and decrease it otherwise.  Moreover, if we bound the effect that players can have on their

own and other players utility (that is, D u D uii i ij i, ), and consider a large number of players,

it is clear that the stability condition implies D u xij i i( )
r

 must either be non-positive, or at

least approach zero.   From this we reach the paradoxical conclusion that unless there are

strategic complementaries, the effect of increasing the patience of the players will be to

decrease the utility of all players.
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6. Learning about Learning

At this stage we have to ask whether any computationally feasible learning

process could lead to the inferences driving the stock flow model of learning.  We now

examine that question in more detail in the context of a simple example.  We examine the

simplest interesting case of a symmetric game with two players, and u x x cx xi i j i j( , ) = .

Throughout the discussion we assume that both players observe their opponents choices

after the fact.

Our basic adjustment equation can be written

& ( ) ( ) & ( ) &

& &

x D u x D u x x D u x D x

cx cx cx D x

i i i ij i j j i i j

j j i i j

= + +

= + +

−

−

ρ

ρ

1

1

It is convenient now to define y xi i= log , and convert this equation into logarithmic form

& / ( / ) ( / ) & / ( / ) & /

& exp( ) exp( ) & exp( ) &

x x c x x c x x x x cx x x D x x

y c y y c y y y c y y D y

i i j i j i j j i j i i j j

i j i j i j j i i j

= + +

= − + − + −

−

−

ρ

ρ

1

1

Given symmetry, we may assume that y yi j,  are close, and introduce the approximation

& ( ) & &y c y y y D yi j i j i j≈ + − + +−1 1 1ρ .

Moving to discrete time, and assuming as is usual in the learning literature that

players learn through random experimentation or mutation, we may write the basic

dynamical equation

y t y t c y t y t y t y t D y t ti i j i j j i j i( ) ( ) ( ( ) ( )) ( ) ( ) & ( ) ( )= − + + − − − + − − − + − +−1 1 1 1 1 1 2 11ρ ε

.
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Here the critical element is D y ti j& ( )-1  which must somehow be estimated from the

available data on the history of play.  This amounts to estimating the dependence of

y t y tj j( ) ( )- - -1 2  on y ti ( )− 2  (presuming that players are bright enough to realize that

y ti ( )−1  cannot possibly have any impact on & ( )y tj -1 .  Since y t y tj j( ) ( )- - -1 2

depends also on time, we can think of carrying out this inference by, for example,

regressing y t y tj j( ) ( )- - -1 2  on a constant and y ti ( )− 2 .

The actual relationship from the dynamical equations is

y t y t c y t y t y t y t D y t tj j i j i i j i j( ) ( ) ( ( ) ( )) ( ) ( ) & ( ) ( )- - - = + - - - + - - - + - + --1 2 1 2 2 1 2 3 2 11r e

The key point is that if the process is non-explosive to a good approximation when ρ−1  is

small (as in the continuous time case studied above), then

y t y t c cy t cy t tj j j i j( ) ( ) ( ) ( ) ( )- - - = - - + - + -1 2 2 2 1e .

Given this that the data generated by the process will approximately satisfy this

relationship, any reasonable procedure for estimating the dependence of & ( )y tj -1  on

y ti ( )− 2 , y tj ( )− 2  and a constant will approximately yield the approximately correct

answer

D y t ci j& ( )− ≈1 .

This, of course, leads back (approximately) to the type of stock flow dynamics we studied

in the previous sections.

Key to this result is the non-explosivity of the process.  To get a handle on this,

we first observe that the levels grow at a constant rate, and that the Jacobian matrix of the

first difference equation for y tj ( )-1  is

1

1
1−

−
�
! 

"
$# + −c c

c c
ρ (other terms)
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For ρ−1  sufficiently small, the eigenvalues will be approximately equal to 1 and 1-2c.

The eigenvalue 1 corresponds to the eigenvector (1,1) pointing in the direction of

constant linear increase, the eigenvalue 1-2c corresponds to the eigenvector (1,-1)

measuring departures from the 45 degree line.  This implies for c > 0  that departures

from symmetry are self-correcting over time.

Inspecting the dynamical equation more closely when y yi j= , we find

y t y t c c y t y t D y t ti i i i i j i( ) ( ) ( ) ( ) & ( ) ( )− − = + − − − + − +−1 1 2 11; @ ; @ρ ε

Clearly, if ρ−1  is small enough this will be stable.
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