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Abstract

We propose a theory of collusive groups in the context of �nite non-cooperative games. We
�rst consider a simple setting in which players are exogenously partitioned into groups within
which players are symmetric. Given the play of the other groups there may be several symmetric
equilibria for a particular group. We develop the idea that if group can collude they will agree to
choose the equilibrium most favorable for its members. We then consider an alternative model of
a strictly non-cooperative meta-game played between �leaders� of groups. We establish equivalence
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utility followers will receive if they follow the instructions of the leader. This leads to a rich theory
of group formation which we explore through a series of examples. We �nd robust equilibria that
involve mixing and Pareto superior equilibria that do not involve mixing but are less robust to
the leadership structure. We also show in prisoners' dilemma type settings that the frequency of
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1. Introduction

Individuals often act as members of a group, but groups do not act as individuals, that is

although they tend to act collusively, groups or their leaders cannot ignore members' individual

preferences and incentives. Hence neither individual rationality alone nor �group rationality� alone

are suited to analyze strategic interaction between individuals mediated by groups. We propose

a theory of collusive groups in the context of �nite non-cooperative games. We �rst consider a

simple setting in which players are exogenously partitioned into groups within which players are

symmetric. Given the play of the other groups there may be several symmetric Nash equilibria

within a particular group. The idea is that a collusive group will agree to choose the equilibrium

most favorable for its members. This leads to an existence problem, which we illustrate with an

example. We overcome the problem through a type of randomization that eliminates a discontinuity,

leading to what we call collusion constrained equilibrium. We show how these equilibria arise as

limits of belief perturbed models in which groups do collude on the equilibrium most favorable

to its members. We then consider an alternative model of a strictly non-cooperative meta-game

played between �leaders� and �evaluators� of groups. We establish equivalence between equilibria

of the collusive group game and the leadership game.

We then extend the leadership model to games where players within groups are not necessarily

symmetric and groups are endogenously determined by competition of leaders. In this model leaders

bid for followers by making credible o�ers of the utility followers will receive if they follow their

instructions. This leads to a rich theory of group formation which we explore through a series of

examples. We �nd robust equilibria that involve mixing and Pareto superior equilibria that do not

involve mixing but are less robust to the leadership structure. We also show in prisoners' dilemma

type settings that the frequency of cooperation increases as the bene�t to cooperation increases and

the bene�t of deviating decreases. There are two basic questions that we address. First we ask the

extent to which particular leadership structures can improve outcome e�ciency. We show how this

can be the case and how it depends on leadership structure. Second we ask how institutions impact

on leadership structure. This we address by examining how the leadership structure matters and

the constraints that determine leadership structure.

The branch of the cooperative game theory literature that is most closely connected to the

ideas we propose to develop here is the literature that uses non-cooperative methods to analyze

cooperative games and in particular the endogenous formation of coalitions. One example is Ray

and Vohra (1999) who introduce a game in which players bargain over the formation of coalitions

by making proposals to coalitions and accepting or rejecting those proposals within coalitions. This

literature generally describes the game by means of a characteristic function and involves proposals

and bargaining. Although our model of endogenous group formation also involves an element of

bidding, we work in a framework of implicit or explicit coordination among group members in a

non-cooperative game. This is similar in spirit to Bernheim, Peleg and Whinston (1987)'s variation

on strong Nash equilibrium, that they call coalition-proof Nash equilibrium, although the details

of our model are rather di�erent.
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There is a long literature on collusion in mechanism design, and our model builds on those ideas.

With a few exceptions the general idea is that within a mechanism a particular group - the bidders in

an auction, the supervisor and agent in the Principal/Supervisor/Agent model, for example - must

not wish to recontract in an incentive compatible way. In the case of the hierarchical models, the

Principal/Agent/Supervisor model of collusion originates with Tirole (1986) and the more general

literature on hierarchical models is discussed in his survey Tirole (1992). For a recent contribution

and an indication of the current state of the literature, see Celik (2009). In the auction literature,

we have the papers of McAfee and McMillan (1993) and Caillaud and Jéhiel (1998) among others.

The theory has been pursued for other types of mechanisms, as in La�ont and Martimort (1997). In

most of this work there is only one group recontracting, so the issue of a �game� among the groups

does not arise. Our setting involves multiple groups on an equal footing. The closest model we

know of is that of Che and Kim (2009) in the auction setting - they allow multiple groups they refer

to as cartels to recontract in an incentive compatible way among themselves. However, it does not

appear that strictly speaking these cartels play a game. Similar to the mechanism design literature

is the study of collusion in monetary matching models such as in Hu, Kennan and Wallace (2009)

where pairs of players who are matched can choose their most preferred equilibrium within the

pair. It is also the case that in the theory of clubs, such as Cole and Prescott (1997) and Ellickson

et al (2001), implicitly collusion takes place within clubs - although the clubs interact in a market

rather than game environment. The issue that groups do not behave as a single individual has

been discussed as well in the literature on collective action (for example Olson (1965)), but that

literature has not provided a general framework for analysis, proposing instead particular solutions

such as tying arrangements or other commitments to overcome incentive constraints.

In applied work - for example by economic historians - the issue of how groups behave is usually

dodged by examining a game in which an entire group is treated as a single individual. This is

the case in the current literature on the role of taxation by the monarchy in bringing about more

democratic institutions. Ho�man and Rosenthal (2000) explicitly assume that the monarch and

the elite act as single agents, and this assumption seems to be accepted by later writers such as

Dincecco, Federico and Vindigni (2011). As the literature on collusion in mechanism design makes

clear, by treating a group as an individual we ignore the fact that the group itself is subject to

incentive constraints. Individuals wish other individuals to act in the group interest, but may not

wish to do so themselves. In a sense we generalize the literature that assumes that a group decision

is made by a single leader by adding to the game an evaluator for that leader who punishes the

leader for violating incentive constraints.

Leadership is also studied in models where a group bene�ts from its members coordinating

their actions in the presence of imperfect information about the environment - see for example

Hermalin (1998), Dewan and Myatt (2008) and Bolton, Brunnermeier and Veldkamp (2013). As in

the present paper the leader provides guide for action, but the similarity ends more or less there.

In these papers there is no game between groups (the focus of our paper), the problem is how to

exploit the information being acquired by leader and group members in the group interest, and
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what in particular are desirable properties of the leader's decision process. To be concrete, Bolton,

Brunnermeier and Veldkamp (2013) �nd for example that the leader should not put much weight

on the information coming from followers (what they call �resoluteness� of the leader). We focus

on strategic interaction between groups, so our model of interaction between leader and group

members is much coarser than in the cited papers. In the present paper the leader proposes a

common course of action and all group members take the same action in equilibrium. On the other

hand a central element of our models is accountability, in that a leader whose recommendations

are not endorsed by the group will be punished.

2. A Motivating Example

The simplest - and as indicated in the introduction a widely used - theory of collusion is one in

which players are exogenously divided into groups subject to incentive constraints. If - given the

play of other groups - there is more than one in-group equilibrium then a group should be able to

agree or coordinate on their �most desired� equilibrium.

Example 1. We start with an example with three players. The �rst two players form a collusive
group and the third acts independently. The simple theory is that given the play of player 3,
players 1 and 2 should agree on the incentive compatible pair of (mixed) actions that give them the
most utility. However, in the following game there is no equilibrium that satis�es this prescription.
Speci�cally, each player chooses one of two actions, C or D and the payo�s can be written in bi-
matrix form. If player 3 plays C the payo� matrix for the actions of players 1 and 2 is a symmetric
Prisoner's Dilemma game in which player 3 prefers that 1 and 2 cooperate (C)

C D
C 6, 6, 5 0, 8, 5
D 8, 0, 5 2, 2, 0

If player 3 plays D the payo� matrix for the actions of players 1 and 2 is a symmetric coordination
game in which player 3 prefers that 1 and 2 defect (D)

C D
C 6, 6, 0 4, 4, 0
D 4, 4, 0 5, 5, 5

Let αi denote the probability with which player i plays C. We examine the set of equilibria for
players 1 and 2 given the strategy α3 of player 3. If α3 > 1/2 then D is strictly dominant for both
player 1 and 2 so there is a unique in-group equilibrium in which they play D,D. If α3 = 1/2 then
there are two equilibria, both symmetric, one at C,C and one at D,D. If α3 < 1/2 then there are
three equilibria, all symmetric, one at C,C, one at D,D and a strictly mixed equilibrium in which
α1 = α2 = (1/3)(1 + α3)/(1− α3).4

4Here is the computation of the mixtures from the condition that player 1 must be indi�erent between C and D:
6α2 + (1− α2)4(1− α3) = α2(8α3 + 4(1− α3)) + (1− α2)(2α3 + 5(1− α3))(
6− 4(1− α3)

)
α2 + 4(1− α3) =

(
8α3 + 4(1− α3)− 2α3 − 5(1− α3)

)
α2 + (2α3 + 5(1− α3))(

6− 4(1− α3)
)
α2 + 4− 4α3 = α2(6α3 − (1− α3)) + 5− 3α3(

6− 3(1− α3)− 6α3
)
α2 = 1 + α3(

3− 3α3
)
α2 = 1 + α3
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How should the group of player 1 and player 2 collude given the play of player 3? If α3 > 1/2
they have no choice: there is only one in-group equilibrium at D,D. For α3 ≤ 1/2 they each get
6 at the C,C equilibrium, no more than 5 at the D,D equilibrium, and strictly less than 6 at the
strictly mixed equilibrium. So if α3 ≤ 1/2 they should choose C,C. Notice that in this example
there is no ambiguity about the preferences of the group: they unanimously agree in each case as
to which is the best equilibrium.

We may summarize the play of the group by a kind of �group best response�. If α3 > 1/2 then
the group plays D,D while if α3 ≤ 1/2 the group plays C,C. What is the best response of player 3
to the play of the group? When the group plays D,D player 3 should play D and so α3 = 0 and in
particular is not larger than 1/2; when the group plays C,C player 3 should play C and so α3 = 1
and in particular is not less than or equal to 1/2. In other words, there is no equilibrium of the
game in which the group of player 1 and player 2 chooses the best in-group equilibrium given the
play of player 3.

In this example, the non-existence of an equilibrium in which player 1 and player 2 collude

is driven by the discontinuity in the group best response: a small change in the probability of

α3 leads to an abrupt change in the behavior of the group. The key idea of this paper is that

this discontinuity is an artifact of the model and does not make sense from an economic point of

view. In particular, it does not make much sense that as α3 is increased slightly above .5 the C,C

equilibrium for the group abruptly vanishes. To understand our proposed alternative let us step

back for a moment to consider mixed strategy equilibria in ordinary �nite games. There also the

best response changes abruptly as beliefs pass through the critical point of indi�erence, albeit with

the key di�erence that at the critical point randomization is allowed. But the abrupt change in

the best response function still does not make sense from an economic point of view. A standard

perspective on this is that of Harsanyi (1973) puri�cation, or more concretely the limit of McKelvey

and Palfrey (1995)'s Quantal Response Equilibria. Here the underlying model is perturbed in such

a way that as indi�erence is approached players begin to randomize and the probability with which

each action is taken is a smooth function of beliefs. In the limit as the perturbation becomes

small, like the Cheshire cat, only the randomization remains. Similarly, in the context of group

behavior, it makes sense that as the beliefs of a group change the probability with which they play

di�erent equilibria varies continuously. Consider for example α3 = 0.499 versus α3 = 0.501. In a

practical setting where nobody actually knows α3 does it make sense to assert that in the former

case player 1 and 2 with probability 1 agree that α3 ≤ 0.5 and in the latter case that α3 > 0.5.

We think it makes more sense that they might agree that α3 ≤ 0.5 with 90% probability and

mistakenly agree that α3 > 0.5 with 10% probability in the �rst case and conversely in the second

case. Consequently when α3 = 0.499 there would never-the-less be a 10% chance that the group

would choose to play D,D not realizing that C,C is incentive compatible, while when α3 = 0.501

there would be a 10% chance that they would choose to play C,C incorrectly thinking that it is

incentive compatible. We will develop below a formal model in which groups have beliefs that are

a random function of the true play of the other groups and are only approximately correct. For the

moment we expect, as in Harsanyi (1973), that in that limit only the randomization will remain.

Our �rst step is to introduce a model that captures the grin of the Cheshire cat - we will simply
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assume that randomization is possible at the critical point. In the example we assert that when

α3 = 0.5 and the incentive constraint exactly binds, the equilibrium �assigns� a probability to C,C

being the equilibrium that is chosen by the group.5 That is, when the incentive constraint holds

exactly we do not assume that the group can choose their most preferred equilibrium, but instead

we assume that there is an endogenously determined probability that they will be able to choose

that equilibrium.

Remark. Discontinuity and non-existence is not an artifact of restricting attention to Nash equi-
librium. The same issue arises if we assume that players 1 and 2 can use correlated strategies.
When the game is a PD, that is, α3 > 1/2 then strict dominance implies that the unique Nash
equilibrium is also the unique correlated equilibrium. When α3 ≤ 1/2 the Nash equilibrium at C,C
Pareto dominates every other correlated strategy, hence remains the unique best choice for players
1 and 2. When α3 ≤ 1/2 the correlated equilibrium set is indeed larger than the Nash equilibrium
set (containing at the very least the public randomizations over the Nash equilibria), but these
correlated equilibria are all inferior for players 1 and 2 to C,C so will never be chosen.

While it is true that the correlated equilibrium correspondence is better behaved than the
Nash equilibrium correspondence - it is convex valued and upper-hemi-continuous - this example
shows that the selection from that correspondence that chooses the best equilibrium for the group
is never-the-less badly behaved - it is discontinuous. It is well known from the earliest work on
competitive equilibrium Arrow and Debreu (1954) that for the best choice from a constraint set
to be well-behaved the constraint set needs to be lower-hemi-continuous and neither the Nash nor
correlated equilibrium correspondence satis�es that property.

3. The Exogenous Group Model

We now introduce our model of exogenously speci�ed homogeneous groups in which the groups

pursue their own interest subject to incentive compatibility constraints.

There are players i = 1, 2, . . . I and groups k = 1,2, . . .K. The actions available to a player

depend entirely on which group he is in; actions available for members of group k are Ak, assumed

to be a �nite set. We assume that there is a �xed assignment of players to groups k(i). Notice

that each individual is assigned to exactly one group and that the assignment is exogenous. All

players within a group are symmetric - that is the groups are homogeneous - so the relevant utility

of player i is uk(i)(ai, a−i) and is invariant with respect to within group permutations of the labels

of other players within their respective groups. If we let Ak denote the mixed actions for a member

of group k, pro�les of play chosen from this set represent the universe in which in-group equilibria

reside.6 As should be clear from the example, we will need to consider randomizations over in-

group equilibria: each group is assumed to possess a private randomizing device observed only by

members of that group that can be used to coordinate group play.

BecauseAk is in�nite, randomization over this set by the group leads to technical and conceptual

complications that we prefer to avoid, so we will restrict the set of possible choices for the group.

5This arbitrary assignment is similar to Simon and Zame (1990) endogenous choice of sharing rules.
6We will discuss also the possibility that this universe might encompass correlated strategies for the group but for

expositional reason we defer that discussion.
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Speci�cally, we �x a �nite subset AkR ⊆ Ak containing all pure strategies, and consider only in-

group equilibria for group k in which all players choose the same action ak ∈ AkR. For example,

with Ak = {H,T} the actions in AkR can be of the form: choose H, choose T , or randomize 50-50

between H and T . In other words, the model is consistent with individual randomization provided

that individuals are limited to a �nite grid of probabilities. Since in-group mixed equilibria may not

be present in AkR we will allow the group to choose in-group ε-equilibria in which small violations

of the incentive constraints are allowed.

Given the symmetry restriction we can simplify notation and write uk(ai, ak, α−k) for the ex-

pected utility of player i in group k(i) = k when ai is his choice, the other group members play

the common group action ak ∈ AkR, and the other groups κ 6= k assigns probability ακ(aκ) to all

members of the group playing aκ ∈ AκR.
Further, since only deviations from the common strategy matter, for player i in group k(i) = k

we need not allow ai to take values in all of AkR - it is su�cient to consider ai ∈ Ak ∪ {ak0} where
ak0 means: �play the common mixed action ak ∈ AkR�. That is, it is enough to consider deviations

by player i to pure strategies Ak, letting uk(ak0, a
k, α−k) = uk(ak, ak, α−k) to be the utility when

no deviation has taken place. Not only does this potentially greatly reduce the set of ai that need

be considered, but extends in a straightforward way when we come to consider correlated group

strategies below. Notice that this formulation incorporates the use of randomizing devices that

are private to the group: member i knows the result of the own group randomization ak(i) when

choosing ai, but does not know results of the randomization by other groups.

Groups are assumed to be collusive - but they may collude only to choose plans that respect

individual incentive constraints. The key reason that we start by considering homogeneous groups

is that since group members are ex ante identical there is an �obvious� group objective, which is

to assume that all members are treated equally and that the objective of the group is to maximize

the common utility that they receive when all are treated equally. 7

As indicated we allow a small amount of slack in the individual incentive constraints. Speci�-

cally, we introduce strictly positive numbers vk > 0 measuring in utility units the violation of incen-

tive constraints that are allowed. For a mixed pro�le α−k by other groups and an action ak by group

k we may de�ne the gain function Gk(ak, α−k) = maxai∈Ak∪{ak}[u
k(ai, ak, α−k) − uk(ak, ak, α−k)]

as the degree to which the incentive constraint is violated at ak (the smaller the gain the more

stable the action). When the gain is strictly less than vk then ak must be chosen by the group if it

is to the bene�t of the group to do so. When the gain is greater than vk then ak the group cannot

choose ak. When the gain is exactly vk then the group may mix with any probability onto ak. This

is the same Cheshire grin logic as in the example, except that in the example we took vk = 0.

De�ne Uk(α−k) = max{ak|Gk(ak,α−k)<vk} u
k(ak, ak, α−k) to be the most utility attainable against

α−k when the incentive constraints are violated by strictly less than vk (it is equal to −∞ if the con-

7Incidentally: it may be that the group does best when rather than playing individual mixed strategies they agree
on a common correlated strategy. This can be dealt with in a straightforward manner by allowing the group to use
correlated strategies, but we defer discussion of this issue for the moment.
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straint set is empty). Then we take the �nite setBk(α−k) = {ak|Gk(ak, α−k) ≤ vk, uk(ak, ak, α−k) ≥
Uk(α−k)} to represent actions that are feasible for the group given α−k. We refer to this as the

shadow response set. They are actions which violate the incentive constraints by strictly less than vk

and yield Uk(α−k), the most possible among such actions, plus those actions with Gk(ak, α−k) = vk

that yield at least Uk(α−k) - but possibly more. Observe that not all actions in Bk(α−k) need be

indi�erent, but that on the other hand all incentive compatible actions outside of Bk(α−k) are

strictly worse for the group than any of those inside Bk(α−k).

De�nition 1. A collusion constrained equilibrium is an αk for each group that places weight only
on Bk(α−k).

De�ne B
k
(α−k) = arg max{ak|Gk(ak,α−k)≤vk} u

k(ak, ak, α−k) ⊆ Bk(α−k) to be the set of actions

that maximize utility subject to the incentive constraints. Again, the key to collusion constrained

equilibrium is that we allow a positive probability of actions in Bk(α−k) not merely in B
k
(α−k). If

in a collusion constrained equilibrium αk places positive weight on Bk(α−k)\Bk
(α−k) we say that

group k engages in shadow mixing, meaning that it is putting positive probability on alternatives it

is not indi�erent to. This may occur when best alternatives are not strictly incentive compatible,

hence - this is our rationale for this equilibrium - they are not available to play with certainty

within the group. This is to be contrasted with putting weight on B
k
(α−k) which are mixtures in

the normal sense of indi�erence. Our example above shows that shadow mixing may be necessary

in equilibrium.

Example 2. To illustrate the de�nition we apply it to the game of Example 1. If player 3 plays
C with probability α3 and the group plays D,D a player in the group who deviates to C gets
α3(−2)+(1−α3)(−1) so this deviation is never pro�table, D,D being strictly incentive compatible.
If the group plays C,C the player who deviated to D gets α3 · 2 + (1−α3) · (−2) = 2(2α3− 1): the
best in-group equilibrium is thus incentive compatible for 2(2α3 − 1) ≤ v1, at equality incentive
compatibility is just satis�ed and the equilibrium vanishes for larger values. So the condition for
shadow mixing between C,C and D,D is 2α3 − 1 = v1/2 or α3 = (1 + (v1/2))/2. Formally, for
this value of α3 the shadow response set B1(α3) = {C,D} for D is the only, hence best, action
satisfying incentive compatibility strictly. For player 3 to be indi�erent between C and D, letting
p the probability with which the group plays C,C we get the condition 5p = 5(1 − p) so p = 1/2.
So equilibrium is that the group mixes 50-50 between C,C and D,D and player 3 plays C with
probability α3 = (1 + v1/2)/2. As v1 → 0 this converges to 1/2.

The assumption that vk > 0 plays a dual role in the model. First as indicated, we need to allow

positive vk if we wish to insure that in-group mixed equilibria are not excluded.8 However, vk > 0

plays a second role: it enables us to properly allow mixing only at �critical� points where small

changes in beliefs lead to a discontinuous change in behavior.

Example 3. Group 1 has three actions H,M,L while group 2 has two actions H,L. For player i
in group k(i) = 2 payo�s are u2(ai, a2, a1) = 0, so group 2 has no active role and we concentrate
on group 1. For player i in group k(i) = 1 payo�s u1(ai, a1, a2) are in the following matrix:

8The importance of this issue is underscored by the possibility of a unique in-group equilibrium, which is mixed.
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ai = H, a2 = H,L ai = M,a2 = H,L ai = L, a2 = H ai = L, a2 = L

a1 = H 2 2 3 1

a1 = M 1 0 1 1

a1 = L 1 1 1 1

Action M is never part of an equilibrium: whatever the other group are doing, if the other
members of your group play M you want to deviate. On the other hand no one ever wants to
deviate from L - but incentive constraints are satis�ed with exact equality there. Behavior against
H is richer: you may want to deviate if the other group are playing H with high enough probability
(to visualize as in the �rst example: if they work hard they cannot watch you). Speci�cally,
equilibria are computed to be as follows. Let α2 be the probability with which members of group
2 play H, and observe �rst that any α2 is an equilibrium for group 2.

If α2 ≤ 1/2 there are two equilibria for group 1: H and L; if α2 > 1/2 the only equilibrium
is L. In all equilibria the incentive constraints are exactly satis�ed (when α2 ≤ 1/2 and group 1
action is H action M gives you the same utility as H; this is the role of M in the example).

So given the mixing rule we have speci�ed above, with v1 = 0 the collusion constrained equilibria
consist of α2 ≤ 1/2 and any vector α1 = (a, 0, b), and α2 > 1/2 together with α1 = (0, 0, 1). The
group cannot guarantee that it will collude on the preferred action H.

With v1 > 0 observe that 2 +v1 = (1/2 +v1/2) ·3 + (1/2−v1/2) ·1 so that members of group 1
are indi�erent between the payo� 2 + v1 they get from agreeing with the group at H and deviating
to L against group 2 playing α2 = 1/2 + v1/2.9 Hence the collusion constrained equilibria consist
of: (1) α2 < 1/2 + v1/2 and α1 = (1, 0, 0), where H is strictly incentive compatible and best
group alternative; (2) α2 = 1/2 + v1/2 and any vector (a, 0, b), where the only strictly incentive
compatible action is L hence B1(α2) = {H,L}; and (3) α2 > 1/2 + v1/2, α1 = (0, 0, 1). As we see,
for α2 slightly larger than 1/2 incentive constraints are violated but the violation is small enough to
make collusion on H viable. Using v1 > 0 captures the di�erence between α2 < 1/2 and the critical
economy where a small change in α2 makes H no longer viable. In a sense it captures the fact that
indi�erence for α2 < 1/2 is not fundamental - it occurs just because there is an action M to which
individuals are indi�erent - but small perturbations in α2 leave that indi�erence unchanged. Put
di�erently, if we think that the inability of the group to coordinate perfectly is due to the fact that
a small randomization in beliefs about the other group may cause indi�erence to be violated, then
the �razor edge� equilibria for α2 < 1/2 are not vulnerable while the critical economy at 1/2 +v1/2
is and this is correctly picked up when we make v1 strictly positive.

Remark. Allowing groups to use correlated equilibria within groups does not change the subsequent
results, it merely requires a di�erent and slightly more complex notation - this is shown in the Web
Appendix. We can also easily allow the possibility that groups are able to coordinate only some of
the time by reducing the requirement αk for each group places weight only on Bk(α−k) to assuming
that it places at least a �xed amount of weight less than 1 on Bk(α−k) with the remaining weight
being placed on anything - that is, uncoordinated.

Incentive Compatible Games

There are two kinds of mixing: the group can mix between di�erent actions chosen by the group

using the group randomization device, but also individuals can mix. As we noted above individual

9We are abusing terminology a bit: they do not �get 2 + v1�, but as long as the left member is larger than the
right one the gain to deviating to L is less than v1.
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mixing is included in the �nite set AkR, so the group mixes over a �nite rather than continuous

set. From an economic and empirical point of view dealing with approximate equilibria within

the group does not pose a problem - in the �eld, laboratory or computationally we cannot expect

individuals to achieve more than an approximate equilibrium.

If AkR contains a relatively �ne grid of mixtures there will be an ε-Nash equilibrium with

a small value of ε. As long as vk is strictly bigger than ε the group can �nd an action that

is guaranteed to satisfy the incentive constraints to the required degree. Speci�cally, de�ne gk =

maxα−k minak∈AkR Gk(ak, α−k) so that regardless of the behavior of the other groups there is always

a gk approximate equilibrium within the group.

De�nition 2. A game is incentive compatible if vk > gk for all k.

Hereafter we will restrict attention to incentive compatible games: roughly this means that we

chose a ��ne enough� grid for each group.

4. Analysis of the Model

Having de�ned collusion constrained equilibrium we now want to show that they exist and make

sense. In this section we consider how collusion constrained equilibria arise as the limits of fully

collusive equilibria with random group beliefs and analyze more closely the role of shadow mixing.

In the next section we will consider a concrete non-cooperative game involving representative or

virtual players from each group and show that it gives rise exactly to collusion constrained equilibria.

4.1. The Existence of Collusion Constrained Equilibria

In this subsection we show that the basic problem of non-existence that arises when group try

to choose actions in B(α−k) is resolved by collusion constrained equilibrium.

Theorem 1. In an incentive compatible game a collusion constrained equilibrium exists.

This result follows from the following basic property of the shadow response set:

Lemma 1. (i) In an incentive compatible game B
k
(α−k) is non-empty for all α−k; (ii) every α−k

has an open neighborhood A such that α̃−k ∈ A implies that Bk(α̃−k) ⊆ Bk(α−k).

Proof. Assertion (i) is obvious from the de�nition. (ii) If not there must be a sequence α−kn → α−k

and points akn ∈ B(α−kn ), akn /∈ B(α−k). Since AkR is a �nite set, we may assume that we have
chosen a subsequence along which akn = ak is constant. Since Gk is continuous in α−kn any aj

such that Gk(aj , α−k) < vk satis�es Gk(aj , α−kn ) < vk for n large enough, so since AkR is �nite
all those which satisfy the constraint strictly in the limit do so for n large enough, which implies
that for such n it is U(α−kn ) ≥ U(α−k). Let ãk ∈ arg max{ak|Gk(ak,α−k)<vk} u

k(ak, ak, α−k). Then

Uk(α−k) = uk(ãk, ãk, α−k) and since ak ∈ B(α−kn ) for all n we then have

uk(ak, ak, α−k) ≥ uk(ãk, ãk, α−k) = Uk(α−k).

By continuity of Gk it is also the case that Gk(ak, α−k) ≤ vk so we obtain ak ∈ B(α−k), a
contradiction.
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Proof of Theorem 1. Call C(α−k) the set of distributions over B(α−k). A pro�le α is a collusion
constrained equilibrium if αk ∈ C(α−k) for all k, that is if α ∈ C(α) ≡ ×kC(α−k), in other words if
α is a �xed point of the correspondence α� C(α). Since the game is incentive compatible C(α−k)
is non empty for any α−k. Further, by construction, it is a convex valued correspondence. As
a result, the correspondence C(α) is non empty and convex valued. By Lemma 1 we know that
that B(α−k) is upper hemicontinuous. In turn this implies that both C(α−k) and C(α) are upper
hemicontinuous. Hence the �xed point sought for exists by the Kakutani �xed point theorem.

4.2. Random Beliefs

We now show that collusion constrained equilibria are limit points of standard equilibria when

beliefs of each group about behavior of the other groups are random and randomness tends to

vanish. We start by describing a random belief model. The idea is that given the true play α−k

of the other groups, there is a common belief α̃−k by group k that is a random function of that

true play. Notice that these random beliefs are shared by the entire group - we could also consider

individual belief perturbations, but it is the common component that is of interest to us, because

it is this that coordinates group play. Conceptually if we think that a group colludes through some

sort of discussions that give rise to common knowledge - looking each other in the eye, a handshake

or whatever - then it makes sense that during these discussions a consensus emerges not just on

what action to take, but underlying that choice, a consensus on what the other groups are thought

to be doing. We must emphasize: our model is a model of the consequences of groups successfully

colluding - we do not attempt to model the underlying processes of communication, negotiation

and consensus that leads to their successful collusion.

De�nition 3. An ε-random group belief model is a density function fk(α̃−k|α−k) that is continuous
as a function of α̃−k, α−k and satis�es

´
|α̃−k−α−k|≤ε f

k
ε (α̃−k|α−k)dα̃−k ≥ 1− ε.

It is important to know that there are ε-random belief models for every positive value of ε. An

obvious idea is to take a smooth family of probability distributions with mean equal to the truth

and small variance. A good candidate for a smooth family is the Dirichlet since we can easily control

the precision by increasing the "number of observations." However using an unbiased probability

distribution will not work - it is ill-behaved on the boundary: if we try to keep the mean equal to

the truth, then as we approach the boundary the variance has to go to zero, and on the boundary

there will be a spike. A simple alternative is is bias to the mean slightly towards a �xed strictly

positive probability vector alpha with a small weight on that vector, and then let that weight go

to zero as we take the overall variance to zero. The next example shows that this works.

Example 4. LetM−k be the number of actions in A−k and set h(ε) = (ε/2)2M−k/(M−k−(ε/2)2).
Fix a strictly positive probability vector over A−k denoted by β−k and call the ε-Dirichlet belief
model the Dirichlet distribution with parameters

1

h(ε)

[
(1− ε

2
√

2
)α−k(a−k) +

ε

2
√

2
β−k(a−k)

]
Theorem 2. The ε-Dirichlet belief model is an ε-random belief model.
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Proof. Since the parameters are away from the boundary by at least ε/2 this has the requisite
continuity property. It has mean α−k = (1− ε

2
√
2
)α−k+ ε

2
√
2
β−k. Set α̂−k = (1− ε

2
√
2
)α̃−k+ ε

2
√
2
β−k.

Since the covariances of the Dirichlet are negative, E|α̂−k − α−k|2 is bounded by the sum of the
variances and we may apply Chebyshev's inequality to �nd

Pr[|α̂−k − α−k| > ε/2] ≤ E|α̃−k − β−k|2/(ε/2)2 ≤M−kh(ε)/[ε(M−k + h(ε))] ≤ ε/2.

Observe that |α̂−k − α−k| = (1 − ε
2
√
2
)|α̃−k − β−k| ≥ |α̃−k − β−k| − ε

2 . Hence Pr(|α̃−k − β−k| >
ε) ≤ ε/2 ≤ ε which shows that this is indeed an ε-random belief model.

Fix some probability distribution F k(α−k) over B
k
(α−k) measurable as a function of α−k.

De�ne Rk(ak|α−k) =
´
F k(α̃−k)[ak]fk(α̃−k|α−k)dα̃−k. Notice that for given beliefs α̃k we are

assuming that the group colludes on a response in B
k
(α̃−k) which are the best choices for the

group that weakly satisfy the incentive constraints, and not on points in Bk(α̃−k)\Bk
(α̃−k) as

would be permitted by shadow mixing. We de�ne an ε-random belief equilibrium as an αε such

that αkε = Rk(α−kε ). The key result is

Theorem 3. Fix a family of ε-random group belief models, an F k(α−k) and an incentive compatible
game. Then for all ε > 0 there exist ε-random belief equilibria. Further, if αε are ε-random group
equilibria and limε→0 αε = α then α is a collusion constrained equilibrium.

Proof. By the Lebesgue dominated convergence Theorem Rk is continuous, so we may apply the
Brouwer �xed point to get existence of ε-random group equilibria. Now consider a sequence of ε-
random group equilibria with limε→0 αε = α. By Lemma 1 we know that for su�ciently small
ε, |α−kε − α−k| ≤ ε implies Bk(α−kε ) ⊆ Bk(α−k). Hence for such αkε and ε it must be that
αkε (B

k(α−k)) = 1 with αk(Bk(α−k)) = 1 at the limit - which is the condition for a collusion
constrained equilibrium.

We should emphasize that this result is not an equivalence result: random belief equilibria

converge as ε → 0 to collusion constrained equilibria. However, there is no assertion that all

collusion constrained equilibria arise this way. This is similar to the result for Harsanyi (1973) where

convergence of random utility equilibria to Nash equilibria is assured, but only under additional

conditions do we know that Nash equilibria arise as limits of random utility equilibria. In cases

such as quantal response indeed, limits of quantal response equilibria are a re�nement of Nash

equilibrium.

4.3. When Does Shadow Mixing Matter?

For applications it is useful to know when groups do not engage in shadow mixing. There are

two important cases where groups will engage only in ordinary mixing.

1. The action that maximizes group utility without constraint is always an in-group equilibrium.

Since the action is an equilibrium, it strictly satis�es the relaxed constraint with vk > 0. Since

it maximizes group utility without any constraint, it certainly maximizes group utility with the

constraint, so B
k
(α−k) = Bk(αk). Notice that in case the group has a single player, or more

11



generally the game is a game of common interest so that group members always get the same

payo�s as each other regardless of the actions chosen this assumption is satis�ed.10

2. Separable games in which u(ai, ak, a−k) = w(a−k)−c(ai, ak) so that the incentive constraints
do not depend on what the other groups do. Here G(ak, α−k) = maxai∈Ak c(ak, ak) − c(ai, ak)

independent of α−k. Hence for generic vk there will be no ak for which G(ak, α−k) = vk. These

models can be important for applications because they can be thought of as approximation in

political economy games such as voting or lobbying games where the group size is large so individuals

perceive that their own action has no impact on the common public good w - for example, the

outcome of a vote.

4.4. What Di�erence Do Collusion Constraints Make?

We return to example 1 to illustrate how accounting for incentive and collusion constraints may

impact on the strategic analysis of a game.

First, the only Nash equilibrium of the game consists of all players to play D. To see this

observe that as shown in Footnote 4 players 1 and 2 can mix only if α3 ≤ 1/2 and then α1 = α2

are increasing in α3; so the smallest value of α1 occurs when α3 = 0 and it is α1 = 1/3. But for

α1 = α2 ≥ 1/3 player 3's best response is to play C for sure; hence there is no equilibrium in which

player 1 and 2 mix. The two of them playing C,C is not an equilibrium because 3's best response

to it is C for sure, but in that case they will play D,D. Pro�le D,D,D on the other hand is Nash.

In this equilibrium payo�s are (5, 5, 5).

On the other hand, ignoring individual incentive constraints, that is assuming that the group

will collude on best group action, leads to predict that players 1 and 2 will play C,C in which case

3 also chooses C. Predicted payo�s would be (6, 6, 5).

Consider now collusion constrained equilibrium. We have seen in Example 2 that in this equi-

librium the group mixes 50-50 between C,C and D,D and player 3 plays C with probability

α3 = (1+ε/2)/2. In equilibrium player 3 gets 2.5. Players 1 and 2 get 4(12 + ε
4)+ 11

2 (12−
ε
4) = 43

4−
3
8ε.

As ε→ 0 the limit payo� vector is a much lower(4.75, 4.75, 2.5).

As can be expected, ignoring individual constraints lead to an unrealistically optimistic con-

clusion. But the remarkable point is that in the example the same is true for Nash equilibrium:

ignoring collusion constraints also leads to predicting higher utilities for the players. Incidentally,

this is why we call our equilibrium collusion constrained : in general collusion makes the group of

the whole worse o�.

Notice that a benevolent mechanism designer who could choose between having players play

the game and a safe alternative that gave payo�s of (4.9, 4.9, 4.9) who either analyzed the game

ignoring collusion or who analyzed the game assuming that players could collude would choose the

game over the safe alternative, while a designer who recognized that collusion is subject to incentive

constraints would reach the opposite conclusion.

10In these games an action pro�le maximizing the utility of some group member does the same for each group
member and must therefore be an in-group equilibrium too.
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5. Leadership Equilibrium

To give a concrete way in which collusion constrained equilibria can arise, we give a non-

cooperative model of leadership which gives rise to collusion constrained equilibria. Leaders lead

their group to act when several groups interact - they tell their followers things such as �let's go on

strike� or �let's vote against that law.� The idea is that group leaders serve as explicit coordinating

devices for groups - and we will model them in a way that gives rise exactly to collusion constrained

equilibrium. Each group will have a leader who tells group members what to do, and since he is to

serve as an e�ective coordination device for group members these instructions cannot be optional

for group members. However, we do not want leaders to issue instructions that members would not

wish to follow - that is, that are not incentive compatible. Hence we give them incentives to issue

instructions that are incentive compatible by allowing group members to �punish� their leader. As

in the previous section incentive compatibility will mean that constraints can be violated by no

more than vk, and here this value has a concrete interpretation as the leader's �valence�: the higher

vk the more members are ready to give up to follow the leader. While this is intended as an abstract

model of how groups can reach decisions, we observe that in fact it is often the case that groups

follow orders given by a leader but engage in ex post evaluation of the leader's performance.

Speci�cally, we will consider the following non-cooperative game. Each group is represented by

two virtual players: a leader and an evaluator, each of whom has the same underlying preferences

as the group members. Each leader has a punishment cost P k > maxaj ,ak,a−k uk(aj , ak, a−k) −
minaj ,ak,a−k uk(aj , ak, a−k). The game goes as follows:

Stage 1: Each leader privately chooses an action plan ak ∈ AkR : conceptually these are orders

given to the members who must obey the orders. All members of group k thus play ak.

Stage 2: In each group, the evaluator observes the action plan of the leader and chooses a

response ai 11

Payo�s: The evaluator receives utility uk(ai, ak, a−k) + vk · I(ai = ak) where I is the indicator

function, that is he gets the vk bonus only if he chooses ak. As to the leader, if the evaluator

chooses ai he gets uk(ak, ak, a−k) − P kI(ai 6= ak), that is, he receives the penalty P k if and only

if the evaluator disagrees with his decision. Note that the leader and evaluator do not learn what

the other groups did until the game is over.

Theorem 4. In an incentive compatible game α are sequential equilibrium choices by the leaders
if and only if αk(ak) > 0 implies ak ∈ Bk(α−k), that is, α is a collusion constrained equilibrium.

Proof. The key implication of sequentiality - see for example Fudenberg and Tirole (1991) - is that
the beliefs of the evaluator about the mixtures of other leaders must be independent of the signal
received from his own leader - since his leader has no information about the signals of the other
leaders. Suppose �rst that α is sequential. Then the beliefs the evaluator for group k about other
groups is α−k independent of the signal that they receive from his own leader - so in e�ect from
the perspective of the evaluator this is treated as a constant.

11The evaluation need not be done by a single evaluator, but by consensus or some other aggregation method by
all or a subset of group members. It makes no di�erence to the results.
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Because the game is incentive compatible, the leader can insure himself a utility of Uk(α−k) by
choosing the best ak that strictly satis�es the incentive constraints since he will not be deposed in
that case. If he makes an announcement that violates the incentive constraints he is deposed with
probability one and gets uk < Uk(α−k), so it must be that any announcement with αk(ak) > 0 has
ak ∈ Bk(α−k).

Suppose conversely that any announcement with αk(ak) > 0 has ak ∈ Bk(α−k). There are two
kinds of ak ∈ Bk(α−k): those for which the incentive constraints hold exactly and those for which
they hold strictly. If they hold strictly, then the benevolent leader gets Uk(α−k) by the de�nition
of Uk. If they hold weakly, then the evaluator is indi�erent between choosing ak and keeping the
leader and picking an alternate best response and penalizing him. Hence the probability that the
leader is penalized pk(ak, α−k) may be any number between zero and one, and in particular may
be chosen so that uk(ak, ak, α−k) − pk(ak, α−k)P k = Uk(α−k) since by de�nition of Bk we have
uk(ak, ak, α−k) ≥ Uk(α−k). This means the leader is indi�erent between all actions in Bk(α−k)
and in particular it is optimal for him to choose αk since that places weight only on Bk(α−k).

Remark. Provided that the penalty P k > maxaj ,ak,a−k uk(aj , ak, a−k)−minaj ,ak,a−k uk(aj , ak, a−k)
the exact size of the penalty does not matter to the sequential equilibrium strategies of the leaders
α: this follows directly from Theorem 4 because the set of collusion constrained equilibria is de�ned
without reference to P k.

6. Choice of Leader and Endogenous Coalition Formation

In a purely mechanical way the results on exogenous groups extend to heterogeneous groups

(and to correlated equilibrium) - this we show in the Web Appendix. But heterogeneity in particular

raises issues of interpretation: taking as exogenous the �objective function of the group� makes it

possible to prove the relevant theorems, but where does that objective function come from? Here

we consider endogenizing both the objective function and the extent of the group.

In the case of exogenous groups we have two models: an abstract model in which groups collude

to choose the �best� action for the group, and a concrete game between leaders whose followers do

as they are told and evaluate the performance of the leader ex post. In the exogenous group case

we showed that the game between leaders is a concrete realization of the group collusion model

by showing that the two models yield the same equilibrium behavior by the groups. The game

between leaders, however, naturally suggests a richer setting for analysis that allows for multiple

leaders. These leaders may, for example, need to compete for groups. This leads us to study how

groups might be endogenously aggregated by such candidate leaders. One can think for example

of leaders12 whose preferences are a weighted average of those of two or more di�erent groups and

who wish these groups to form a heterogeneous coalition and adopt a common course of action;

and that these �common� leaders have to compete with �parochial� group leaders who inherit group

preferences and wish to lead their own groups - and why not, possibly other groups too. So we

will continue to consider homogeneous groups, but will allow from now on the possibility that each

group be approached by di�erent candidate leaders who in turn possibly approach di�erent groups.

12From here on by �leader� we mean �candidate leader� - we most often omit the adjective for brevity.
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How do leaders compete for groups? What will a leader say to convince a group to follow him?

Our answer is that his message is of the form: �Do what I say, and you will get utility U �. Thus

to win a coalition leaders will as before recommend actions but will in addition make utility bids

declaring what payo� the involved groups will attain. Groups will choose the leaders who o�er

them the highest �reasonable� utility level. They follow as before the action the chosen leader

recommends, but punish him if they think his utility bid is too high compared to what they expect

to actually get. Thus leaders who manage to form a coalition that follows them are punished under

�discontent� conditions analogous to what we had before.13 To illustrate the basic ideas we again

start with a simple example.

Example 5. This is a simple game between two groups of at least three members each, which
we call the conformists prisoner's dilemma. The two groups are symmetric with each other, and
players choose between two actions C,D. If all players in each group choose the group action the
individual payo�s are given by the additively separable prisoner's dilemma game

C D
C 1 , 1 −γ , 1 + γ
D 1 + γ , −γ 0 , 0

Individual preferences re�ect a desire for conformity: an individual player gets the payo� de-
termined by the common action minus a �xed strictly positive penalty if he fails to choose the
group action.14 This means that any pure choice of action by the group is incentive compatible,
and enables us to focus more clearly on the relation between the two groups.

In the model of two exogenous homogeneous groups the outcome is clear: each group has the
dominant action of D and the outcome is that this is what both groups do and all players receive
0. But is there somehow a way out of this deadlock? Indeed: why should not somebody who can
speak to both groups point out the clear bene�t to all from forming a single group and make them
coordinate on C under his leadership? Unfortunately, the common group is susceptible to a similar
problem: why does not a member of, say, group 1 propose that by separating from the common
group and playing D all members of group 1 would receive 1 + γ instead of 1. Of course if both
groups do this, we are back to 0 and joining the combined group seems attractive again.

Our proposal, as we said, is now to consider explicitly that there are leaders that recommend
actions as before and make utility bids in an e�ort to form coalitions. Group members will choose the
best bid - but we require that bids be credible in the sense that the expected utility group members
receive when they choose the best bid should in fact be at least the utility they were promised.
Just as in the exogenous group model we imposed (and continue to impose) the requirement that
the instructions of the leaders be acceptable to the members by having the members evaluate
the instructions ex post, so we will impose the requirement that bids be credible through ex post
evaluation by the members.15

13Observe that this is not a model of elections, where an overall winner sets rules all players must follow. Each
group does elect a leader but di�erent groups or coalitions or groups will generally select di�erent leaders and each
will act according to the prescriptions of the leader they choose. Payo�s accrue in the game among groups from the
pro�le of actions of the di�erent groups and members therein.

14We impose that the group is composed by at least three members so that the �group of all players except you�
has at least two members so it is a majority against you.

15By ex post we mean after the group has accepted the leader's o�er, as opposed to assessing the credibility of
leaders' o�ers ex ante before selecting one. As will be clear from the following, o�ers are, however, judged before
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To explain what we propose to do let us assume that there are three leaders: two group leaders
with preferences inherited from their respective groups, and a common leader who cares about the
average utility of all members of both groups. The group leaders send o�ers only to their own
group; the common leader sends o�ers to both groups. We will show later that in equilibrium the
group leaders always recommend D while the common leader always says C. Hence let us assume
here this is what happens. The interest lies in utility bids. Again for simplicity in this example, let
us suppose that they may only bid utility of either 0 or 2(1− ε) where ε is a small positive number.
Group members follow the leader which bids the highest utility, and in case of a tie they follow
their own group leader (this tie-break rule we will adopt throughout).

First let us see if there can be a pure strategy equilibrium. If the group leaders both bid 2(1−ε)
then in fact everyone gets 0 and they are clearly seen to be liars and would be punished for sure.
If they both bid 0 the common leader can bid 2(1− ε). In this case everybody actually receives 1
and - given that the leader is constrained to bid 2(1− ε) or 0 the claim of 2(1− ε) is more accurate
than the alternative bid of 0 so the common leader should be regarded as telling the truth. But:
in this case a group leader can bid 2(1− ε) and not be punished, for the bid will be accepted, the
result will be that his group gets 1 + γ so he also should be regarded as telling the truth. So there
is no equilibrium in pure strategies.

Let us then look for a mixed equilibrium. Suppose the group leaders each bids 2(1 − ε) with
probability p and that the common leader bids 2(1 − ε) with probability q. An individual who
accepts an o�er of 2(1 − ε) from the common leader gets −pγ + (1 − p) · 1, for with probability
p the other group's leader wins by bidding 2(1 − ε) and the other group will play D, while with
probability 1− p the common leader wins the other group and outcome is C,C. For the common
leader to be indi�erent between the two bids given he will be evaluated ex post the expected utility
received by the groups should be 1 − ε, since in that case both bids of 2(1 − ε) and 0 are equally
accurate hence the extent to which he may be punished can be determined endogenously to make
him indi�erent between the two bids. Hence it must be that −pγ+ (1−p) = 1− ε or p = ε/(1 +γ).
Now we examine the optimal choice by the group leaders. An individual who gets an o�er of 2(1−ε)
from a group leader accepts that o�er, plays D and gets q(1− p)(1 + γ), for they get 1 + γ only if
the other group plays C, which occurs in the event the common leader bids 2(1− ε) and the other
group leader bids 0. In order for the group leader to be willing to mix this utility must again be
equal to 1 − ε. That is, the condition for equilibrium is q(1 − p)(1 + γ) = 1 − ε. Substituting the
equilibrium value of p we then get q = (1 − ε)/(1 + γ − ε). Thus for small ε the equilibrium is
approximately q = 1/(1 + γ) and p = 0.

This shadow mixing equilibrium seems to have sensible qualitative properties. The parameter
γ measures how attractive is defection relative to cooperation. Cooperation occurs in equilibrium
when common leader wins both groups, so equilibrium probability of cooperation is q(1 − p)2.
When γ is small the con�ict between the groups is small and the common group forms with high
probability since q(1−p)2 is near 1 and the groups cooperate most of the time. When γ is large the
con�ict between the groups is large, the common group forms with low probability since q(1− p)2
is near 0 and the groups rarely cooperate.

payo�s accrue. A word on this may be useful, because we are assuming for instance that if a leader proposes �War,
Win for sure� and the group chooses the leader they go to war, but if they think there is a non-negligible (in what
sense will again be clear in the sequel) probability of defeat they punish the leader, even if in the end the war is won.
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6.1. A Model of Endogenous Coalitions

The analysis of two conformist groups playing a prisoner's dilemma game is limiting in a number

of ways. For example: why should leaders be restricted only to make two o�ers - while it might

make sense that they are limited to a �nite set, it seems likely that they can make more re�ned

o�ers than 0 or 2(1 − ε). Similarly why those two particular o�ers? What if the groups aren't

conformist? What if group leaders can talk to both groups? And so forth. Here we introduce a

more general model that captures the logic of the example while dropping the arbitrary limitations.

After describing this model and basic results, we then use it to analyze a class of games which

includes the conformist prisoner dilemma as a special case.

In the formal model leaders must induce groups to join them. They recommend actions and

make utility bids. Members of a group choose the leader who makes the highest bid (accounting

for valence), where this choice implies their commitment to follow the leader's recommendation for

action. Credibility of his utility bid is then assessed by an evaluator and the leader is punished for

lying as will be made precise shortly.

We continue with the framework that there are players i = 1 . . . I and groups k = 1,2, . . .K

and that player i belongs to group k(i), has available deviations Dk(i) and that the group has

available actions in the �nite set AkR. We continue to write uk(i)(ai, ak(i), a−k(i)) for the utility of a

member of group k(i). We continue to consider a collection of homogeneous groups. Now however,

we consider a more �exible set of leaders.

There are leaders ` = 1, 2, . . . , L where L ≥ K. Each leader potentially leads a coalition: a set

of groups K` ⊆ {1, . . .K} to which he can appeal. Leaders are assumed to have preferences of the

form u`(a) =
∑

k∈K` β`ku
k(a) where βk are some �xed non-negative weights with

∑
k∈K` βk = 1.

That is, a leader wishes to maximize some weighted average of the utility of the groups in his

coalition. We do not attempt to explain where these weights come from: but we can consider

competition between leaders of the same coalition who value the groups di�erently.

Each leader ` makes an o�er r` = (a`k, u`k)k∈K` consisting for each group k in his coalition of an

action to be played a`k ∈ AkR and a utility level o�ered u`k ∈ U . The utility o�ers are chosen from a

common �nite feasible set of bid utilities U ⊂ <, the same for all leaders. Let u = min{u|u ∈ U}. We

assume that u < mink,aj ,ak,a−k uk(aj , ak, a−k) and max{u|u ∈ U} > maxk,aj ,ak,a−k uk(aj , ak, a−k).

The grid is evenly spaced with the gap between grid points equal to d > 0. We let R` be the set of

all possible o�ers r` that can be made by leader `.

As before leaders also have a valence v`k for k ∈ K` which now may be di�erent for di�erent

groups in his coalition. These valences are used both for evaluating actions and utility o�ers. We

assume that no ties are possible for utility o�ers, that is, there is no group k, no pair of utilities

u, u′ ∈ U and no pair of leaders ` 6= l with k ∈ K`,Kl such that u+ v`k = u′ + vlk.

We assume that each group gets o�ers from at least one leader. It is convenient to denote the

leader who has the highest valence v`k among those who are able to make o�ers to group k by

` = k. We refer to the leader k as the group leader for k although that leader may also be able to

make o�ers to other groups. In this context, if vkk > gk, that is if the group leaders have su�cient
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valences to �nd an incentive compatible plan for their group we say as in Section 3 that the game

is incentive compatible. We consider incentive compatible games henceforth.

All leaders except for group leaders bidding to their own group can guarantee that they lose

the bidding by bidding u; and by assumption a losing bid is never punished. If ` (including group

leaders) bids uk = u to all groups k ∈ K` we say that the leader has opted-out.

As in Section 5 each group has an evaluator. In addition to evaluating the action of the leader,

the evaluator must now also evaluate the utility o�er of the leader. He does so by choosing a

predicted utility on the grid U . We assume that his payo� includes the square di�erence between

predicted utility and actual utility - in the absence of a grid this would imply that his optimal choice

is the conditional expectation of utility given his information. Given the constraint of the grid, if

the conditional expectation is not exactly at the midpoint of a grid interval it is optimal for the

evaluator to choose as predicted utility the unique point of U closest to the conditional expectation.

In case expected utility is at the midpoint of a grid interval the evaluator is indi�erent between

choosing as predicted utility one of the two closest points on the grid and can mix between the

two points. In either case the leader is punished if his bid is greater than the realized prediction of

the evaluator, or if as in Section 5 the evaluator's chosen action is di�erent than the one proposed

by the leader. We assume that the punishments are cumulative: that is, if leader ` is punished

by groups k ∈ K he su�ers a penalty of
∑

k∈K P
`k. We continue with the assumption that P `k >

maxaj ,ak,a−k uk(aj , ak, a−k)−minaj ,ak,a−k uk(aj , ak, a−k).

The coalitional game proceeds as follows:

Stage 1: each leader privately chooses an an o�er r` ∈ R`

Stage 2: each group joins the coalition of the leader who o�ered that group the highest value

of u`k + v`k and the evaluator for group k observes the name ` of the coalition leader for his group

and the entire o�er r` of that leader

Stage 3: the evaluator for group k chooses a response (ak, uk), consisting of an action and a

predicted utility

Payo�s: the evaluator gets uk(ak, a`k, a−k) − (uk − uk(a`k, a`k, a−k))2 + I(ak = a`k)vk`; if κ`

are the groups that accepted leader `'s o�er, then leader ` receives utility u`(a) −
∑

k∈κ` I(ak 6=
a`k, uk > u`k)P `k.

Note that if a group does not join a leader's coalition he still passively receives utility from them

based on what they choose to do. The evaluator does not observe the losing bids for his group: this

is important because it means that - since the leader knows that the evaluator will evaluate his bid

only if it is accepted - the evaluator evaluates the leader based on exactly the same information

available to the leader. However, the evaluator does observe the bids made by the leader of the

coalition he joins to other groups in the coalition. This is also important: it insures that if a leader

deviates from the equilibrium path evaluators cannot speculate about what was o�ered to other

groups in the coalition.
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6.2. Equilibrium and Correlated Equilibrium

We now spell out a basic property of the equilibrium of the above game.

De�nition 4. A correlated strategy ρ over actions - that is a probability distribution derived
from pro�les of leaders recommendations and the rule for accepting highest bids - is a coalition
constrained equilibrium if it corresponds to the strategies of the leaders in a sequential equilibrium
in the coalitional game. By an ε-correlated equilibrium we mean a correlated strategy ρ over actions
where the payo�s are those of the individual group members.

Theorem 5. In an incentive compatible game a coalition constrained equilibrium is a max vk`-
correlated equilibrium.

Proof. Each leader can guarantee that he is not punished. Non-group leaders can simply make
minimum o�ers that will necessarily be rejected in favor of the group leaders, hence will not be
punished. Group leaders can make minimal o�ers to all groups which means that none of those
o�ers will be accepted except (possibly) the o�er to their own group. For the o�er to the own
group the fact that the game is incentive compatible means that given the strategies of all other
leaders there exists a recommendation for their own group that is strictly vk` incentive compatible
resulting in no punishment.

Since every leader can guarantee that he is not punished, in equilibrium no o�er can be punished
with probability 1, meaning that conditional on the play of the other groups it must be at least
max vk` incentive compatible.

Remark. We should highlight that our model of coalition constrained equilibrium involves a number
of modeling choices.

• Evaluation is based on information available to the leader. If we were to assume otherwise

we would get equilibria where leaders are forced to lie on the equilibrium path

• We allow leaders to �lie� by understating utility: If we were to assume otherwise then leaders

could be trapped into being punished for a high bid because they are unable to cut their bid

slightly to avoid punishment. This would result in a plethora of equilibria and it is hard to

see why they would make sense.

• We assume that punishments by di�erent groups are cumulative, rather than, say assuming

that the leader is punished if he is punished by some group who has a say over his punish-

ment. This simpli�es the analysis greatly because we do not need to take account of how the

probabilities of punishments by di�erent groups interact.

• Groups must accept the highest bid and evaluators know only the winning bid and not

alternative bids that were rejected. If not then bids are not really bids, but just abstract

messages that could not then be clearly evaluated.

• The evaluators see the bids made to other groups. If not they would have too much freedom

to form implausible beliefs in response to deviations by leaders.
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6.3. Equilibrium in the Prisoners Dilemma

We now compute equilibrium in the conformists prisoners dilemma of Example 5. We assume

that the grid U starts at u < −γ, has gaps of length 0 < d ≤ γ, 1/2, and does not contain the

points d/2, 1 + d/2. We also let U0 be the unique grid point in the open interval (−d/2, d/2), and

U1 the unique grid point in (1− d/2, 1 + d/2).

The leadership structure is the one outlined in Example 5, we now describe it more precisely.

There are three leaders, the group leaders ` = 1, 2 with valences v1 = v2 = v and a common leader

` = 3 with valence 0 < v3 < v. Fixed costs are zero. The group leaders make o�ers only to their

own groups and put all weight on their own group's utility. The common leader makes o�ers to

both groups and puts equal weight on the utility of each group. Notice that for the common leader

C strictly dominates D. We assume that u− d+ v < u+ v3 so that if the group leaders underbid

the common leader they lose. This can also be written as v − v3 < d.

De�nition 5. A strongly symmetric equilibrium is one in which both group leaders play the same
strategy, o�er only D and bid greater than or equal to U0 and in which the o�ers made by the
common leader are of the form C, u,C, u.

For a strongly symmetric equilibrium we denote by R(u) the probability with which a group

leader bids less than or equal to u and by Q(u) the probability with which the common leader bids

less than or equal to u. The following results are proved in Appendix 1.

Theorem 6. In the PD game there is a unique strongly symmetric equilibrium. In this equilibrium
no leader bids below U0. For U0 ≤ u < U1

R(u) =
u+ γ + d/2

1 + γ

with R(U1) = 1 and for U0 < u ≤ U1

Q(u) = (γ/(γ + d))(U1−u)/d

with

Q(U0) = (γ/(γ + d))(U1−U0−d)/d
(

γ

U0 + γ + d/2

)
.

Neither leader is punished for bidding U0 and both leaders are punished with positive probability for
each higher bid. In this equilibrium, each group cooperates with probability Π where

1− d
1 + γ

≤ Π ≤ 1

1 + γ
.

It is worth noting that in equilibrium group leaders bid higher utility values with (weakly)

decreasing probability, while the common leader bids higher values with increasing probability.

For comparative statics the continuum limit is cleaner to work with (proof in Appendix 1):

Theorem 7. The limit of the unique strongly symmetric equilibrium as d→ 0 is given by

R(u) =
u+ γ

1 + γ
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w ith R(1) = 1, and for 0 ≤ u ≤ 1
Q(u) = e(u−1)/γ .

6.4. Transfer Games with Group and Common Leaders

A question naturally arises in the prisoners dilemma game: for general coalition constrained

equilibria, can we bound probability of defection from above? We answer this in a class of 2 × 2

transfer games which includes the conformists prisoners dilemma as a special case. The games in

this class again have two conformist groups of at least three members each, symmetric with each

other, where players choose between two actions C,D. If all players in each group choose the group

action the individual payo�s are given by the the following matrix, where γ, λ > 0:

C D

C 1 , 1 1− γ − λ , 1 + γ

D 1 + γ , 1− γ − λ 0 , 0

Here γ is the transfer parameter, while λ measures ine�ciency created by the transfer. If

1− γ − λ < 0 the game is a prisoners dilemma (PD), while if 1− γ − λ > 0 it is a hawk-dove (HD)

game.

For this class of games we assume that the grid U starts at u < min{0, 1 − γ − λ}. The other
basic assumptions are as in Section 6.3. That is, we continue to assume that the grid has gaps of

length 0 < d ≤ γ, 1/2 and that it does not contain the points d/2, 1+d/2. The leadership structure

is unchanged (two group leaders and a common one, 0 < v − v3 < d, zero �xed costs), and again

U0, U1 denote the grid points closest to zero and 1.

In this class of games the probability of defection has an upper bound in any coalition con-

strained equilibrium. Recall that leader ` makes an o�er r` = (a`k, u`k)k∈K` . The following is

proved in Appendix 2:

Theorem 8. If ρ is a coalition constrained equilibrium of a transfer game then

ρ(D,D) + min{ρ(C,D), ρ(D,C))} ≤ γ + d+ v − v3
1 + γ

6.5. General Games with Group Leaders Who Can Talk

We now step back and ask: Who can leaders talk to? Our answer is to groups to whom they

can make credible o�ers - which means to groups who can punish them. Can you be punished by

people you do not care about? That is, if a leader's preferences does not depend signi�cantly on

a given group payo�, can he be punished by that group? If the answer is no, then group leaders

for example can only talk to their own group (as we have assumed so far) and with this restricted

message space the equilibrium payo� sets may be not be as large as one would hope. If on the other

hand group leaders can talk to other groups - as we shall now assume - they can make a sizable

di�erence, as we now show.
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Assume there are two groups k = 1,2 and just the two group leaders `1, `2 (`k with preferences

of group k), but suppose now that each of them can talk to both groups. As before, in case of tie

in utility bids to a group the own leader wins.

For the next result we assume that the grid interval length d is smaller than the least non-zero

di�erence in payo� to either group from any two action pro�les. We let Xk be the action by group

k that minmaxes group −k, where the maximization is subject to incentive compatibility.

Theorem 9. Let A = (A1,A2) be an e�cient, incentive compatible pro�le where each group gets
strictly more than the minmax payo�, and let UA1 , U

A
2 be the grid points closest to u1(A), u2(A).

Then pro�le A played for sure, with no leader punishment, is the outcome of the pure-strategy
sequential equilibrium where the o�ers of leaders `1, `2 are respectively

r1 = (X1, U
A
1 − d), (A2, U

A
2 ) r2 = (A1, U

A
1 ), (X2, U

A
2 − d)

Proof. Note �rst that by de�nition an evaluator observing a leader's deviation believes the other
leader is playing his equilibrium strategy. Consider leader 1's deviation possibilities. To get a
higher payo� than u1(A), he has three options: keep control of group 2 alone, gain control of group
1 alone, or win control of both groups; and take the appropriate actions. To control group 2 alone
he must bid (U1, U2) with U1 < UA1 , U2 ≥ UA2 ; and to increase his payo� he must prescribe to
group 2 an action B2 with u1(A1, B2) > u1(A). But U1 < UA1 implies evaluator 2 believes group
1 is following `2 hence playing A1, and e�ciency and the �ne grid assumption imply u2(A1, B2) <
u2(A)− d ≤ UA2 − d/2 ≤ U2 − d/2. This entails sure punishment by group 2.

What if `1opted out of group 2 and took control of group 1 instead? His bid (U1, U2) should have
U1 ≥ UA1 , U2 < UA2 , plus some incentive compatible action prescription B1 to group 1. This implies
group 2 playing the minmax X2, evaluator 1 knowing it, and u1(B1, X2) < u1(A)− d ≤ U1 − d/2,
that is no utility gain and sure punishment by group 1.

The only possibility left is to win both groups with a bid (U1, U2) where U1 ≥ UA1 , U2 ≥ UA2 ,
and have them play a pro�le B with u1(B) > u1(A). But this implies that evaluator 2 observes
o�er (B1, U1) hence believes group 1 is following `1, hence believes the sure play of pro�le B. But
by e�ciency and the �ne grid assumption u2(B) < u2(A)− d ≤ U2 − d/2, hence sure punishment
of `1 by group 2.

To see what the result says in a familiar example reconsider the conformists prisoners dilemma

of Example 5, with payo� matrix

C D

C 1 , 1 −γ , 1 + γ

D 1 + γ , −γ 0 , 0

In this case the theorem says that the e�cient cooperative outcome (C,C) can be obtained for

sure and without punishments in equilibrium with the following pair of o�ers, where U0 and U1 are

the grid points closest to 0 and 1:

r1 = (D,U0), (C,U1), r2 = (C,U1), (D,U0)

To see what is going on consider leader 1. In this game there is no point in inducing your group

to cooperate unless the other is cooperating too; what the (C,U1) part of o�er r
1 does is to �take
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the bull by the horns� by talking directly to the other group and try to convince them to cooperate

by showing that you don't want to screw them; the (D,U0) part is there to tell that you are not

willing to allow the other leader to take the whole cake. In the end you �lead� your group to a high

payo� by convincing the other group to follow your lead.

Still in the context of the prisoners dilemma notice that if the group leaders can only make o�ers

to their own group the e�cient outcome cannot be obtained despite the presence of a common

leader. It is interesting that the common leader himself may stand to gain if the group leaders

could talk to the other group.

On a di�erent vein, one may observe that the �folk theorem� shown above might even work

with three groups where each group leader can talk to their own and adjacent group, but not if

there are too many of the same size. Consider for simplicity the PD case. The generalization of

the equilibrium found above has group leader for group k talking to and winning group k+ 1, and

the K-th group leader winning group 1. The potentially pro�table deviation in this setting would

involve a leader asking both his own group and the group he was meant to lead in equilibrium to

defect while all the other groups cooperate. Then both groups take the o�er, and make all the rest

of the groups pay. Whether this deviation works depends on how pro�table is for two groups to take

advantage of everyone else. With three groups it is not so easy for two groups to take advantage

of the third (two out of three groups deviating makes for a low payo� for all, so cooperation is

equilibrium), but with many groups a coalition of two groups is small and can reasonably get a

high payo� by deviating while all the others are cooperating. We capture this observation formally

in what follows.

Suppose there are K conformist groups that are engaged in the following conformist class game.

For notational ease let group 1 be labeled as both 1 and K + 1. Each group can choose either C

or D. Suppose a fraction, φ of the groups choose D while the others choose C. Then each D

group gets α(φ) + γ(φ) while each C group gets α(φ) − φ
1−φγ(φ) − λ(φ). We assume that α, γ

and λ, respectively the per capita surplus from cooperation, transfer made to the defectors and

the ine�ciency caused by transfers, are all continuous functions of φ. In addition α and γ are

non-increasing in φ and λ is non-decreasing and strictly positive. We further assume,

α(0) + γ(0) > α(0) > α(1) + γ(1).

So for small enough K, φ = 2/K is large enough to make α(φ) + γ(φ) < α(0) but for K large

enough φ = 2/K will be so small that α(φ) + γ(φ) > α(0) which makes cooperation not viable.

Each group k has a group leader `kwho can make o�ers to groups k and k + 1. Let U1(φ) be the

grid point closest to α(φ) and d be smaller than the least non-zero di�erence in payo� to any group

from any two action pro�les.

Theorem 10. There exists K̄ > 0 such that leader `k o�ering (D,U1 − d) to group k and (C,U1)
to group k + 1 is a pure strategy sequential equilibrium if and only if K ≤ K̄. In this equilibrium
all groups cooperate with certainty.

Proof. Leader `k receives α(0) from the stated strategy pro�le. A pro�table deviation must induce a
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higher payo� for Group k. There are only two possibilities. First, `k gains control over k by o�ering
(D,U1) while continuing to lead k + 1 with the original o�er. This, however, would result in sure
punishment by Group k + 1 since they would receive a payo� of α(1/K) − 1

K−1γ(1/K) − λ(1/K)
from such a deviation. Second, `k could o�er (D,U1) to k and also ensure that k + 1 plays D by
either o�ering them (D,U1) or opting out by making a lower utility bid. Either way the deviation
is unpro�table if and only if

α(0) ≥ α(2/K) + γ(2/K).

Given our assumptions about the functions αand γ there must exist some K̄ such that the inequality
above holds if and only if K ≤ K̄.

7. Robustness

Besides their ubiquitous presence, the other relevant fact about leaders is that new ones may

emerge. From equilibrium perspective the question is then what happens if more leaders are added

in a given situation. Are equilibria robust to addition of new leaders? And, is competition among

leaders good or bad for e�ciency?

Before starting to explore this problem we consider robustness in terms of coalition proofness.

For a correlated strategy ρ we de�ne the utility set UK(ρ) for a coalition K ⊆ {1, . . .K} as the set
of utility vectors for members of the coalition corresponding to action pro�les a that have positive

probability in ρ. Let v̄ = max{v`k | ` = 1, . . . L, k ∈ K`} be the highest leaders valence. We say that

ρ is ε-strongly blocked by K if there exists a in-group v- (pure) Nash equilibrium aK that strictly

Pareto dominates every point in UK(ρ) by at least ε (for members of K). We say that ρ is ε-weakly

coalition proof if it is not ε-strongly blocked by any K`.

Theorem 11. Every coalition constrained equilibrium is v- weakly coalition proof.

Proof. Suppose ρ is v-strongly blocked for some K`. Let aK be the blocking o�er. Then ` can o�er
his coalition aK giving them a utility vector uK. If d is the length of the grid interval above uK he
may bid up to uK+ d/2 without being punished. On the other hand, regardless of which o�er they
accept, by assumption members of K get a utility ũK so a utility o�er of at most ũK + d/2. The
attractiveness of this o�er is at most ũK + d/2 + v. By assumption ũK + v + d/2 < uK + d/2 and
the alternative o�er by ` must be accepted. This o�er will not be punished since it is v-incentive
compatible by assumption, and it makes the leader strictly better o�.

We now turn to robustness to the addition of leaders.

De�nition 6. A coalition constrained equilibrium is robust if it remains a coalition constrained
equilibrium when we add a leader identical to an existing leader but with a smaller valence than
any existing leader.

We consider the robustness of equilibria encountered so far. No general result emerges. There

are some good equilibria which are not robust and nasty ones which on the contrary seem impossible

to disrupt. A comforting result is that the strongly symmetric equilibrium of Theorem 6 is robust.

Recall that the game was the PD game with two group leaders talking to their own group and

a common leader talking to both groups. If it is possible to sustain the equilibrium when entry
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takes place then it is certainly possible to do so when the evaluator of the new leader punishes the

corresponding leader with probability 1 whenever he can do so, so we may restrict attention to this

case.

Proposition 1. The equilibrium of Theorem 6 in the conformist prisoners dilemma is robust.

The proof of this is in Appendix 1. Another robust equilibrium is not as nice. Consider the

Hawk-Dove case of transfer game, that is the class of Section 6.4with 1 − γ − λ > 0. The two

classical asymmetric equilibria C,D and D,C are still equilibria with group leaders talking to own

groups, the leader of the favored group o�ering D,U1 (with U1 still being the grid point near 1 that

is near 1 + γ).

Proposition 2. Asymmetric equilibria in the HD game are robust to addition of any type of new
leader.

Indeed, the leader of the group favored by the asymmetric equilibrium is winning own group

with the high bid near 1 + γ, so no type of leader can win this group and prescribe cooperation

without getting punished for sure.

Other equilibria are not robust. Consider �rst the three-player Example 1.

Proposition 3. Suppose that the leader of the group is able to make o�ers to both groups. Equi-
librium is then not robust to addition of a second group leader.

Here the original leader will go for the (5, 5, 5) payo� rather than the shadow mixed equilibrium.

Now add a second leader for the group, able to make o�ers to the other group or not: the second

leader goes for (6, 6) for the group against the (5, 5) equilibrium, so that equilibrium is not robust.

New group leaders seem disruptive, in particular they disrupt the e�cient equilibria of Section

6.5. Let us focus on transfer games for simplicity, and maintain the assumption that v−vnew < d < γ

where vnew is the new leader's valence. To what kind of new leader addition is the C,C cooperative

equilibrium robust? The answer is straightforward:

Proposition 4. The cooperative equilibrium is robust to addition of a leader talking to group k if
and only if he prefers that group to play C when the other group is playing C.

The assertion is self evident: if he preferred group k playing D when −k is playing C he could

o�er (D,U1 + d) to group k and opt out of −k. By so doing he would win k and disrupt the

cooperative equilibrium. In other words we can add a new leader talking to k if he does not put too

much weight to k's payo�. The value of lambda would pin down the range of weights for leaders who

care about both groups that wouldn't disrupt the nice equilibrium. Surely cooperative equilibrium

is robust to addition of common leaders but not to arrival of new group leaders. Emergence of new

group leaders is de�nitely detrimental in this setting.

The result on the lack of robustness of the e�cient equilibrium when more group leaders are

added is luckily not the end of the story. Indeed, suppose there is a "pre-game" where groups can

choose what sort of leadership structure to have. E�ciency requires that the group should choose

to have a single leader who is susceptible to punishment by the other group - but has exactly the
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group preferences. Since the number of possible leaders is observed before bids are made, there is

no disadvantage in having one leader: if he sees the other group has two leaders he knows they can't

be trusted, so will make them a nice o�er. If on the other hand the group allows a second leader,

the leader(s) of the other group will see that and know that your group cannot be trusted, so you

will not get a nice o�er. What this says is that basically by agreeing to have just one leader you give

your leader the useful valuable possibility of making commitments without being undermined; by

choosing someone who can be punished by the other group you give him the possibility of talking

to the other group. Since he has your preferences you can trust him to do the best thing for your

group. In other words groups may have the right incentives to develop e�cient institutions.

An instance of e�cient institutions in this respect is surprising enough - for the above story

suggests that dynasties may be e�cient in sustaining cooperation. Indeed a setting where a leader

can be punished by opponent group - hence can credibly make o�ers to them - is the case of

marrying o� your ward to a competing family or kingdom. Consider then the e�cient equilibrium

implemented by marrying o� your ward to the the neighboring country. The fact that new group

leaders can disrupt this equilibrium corresponds to the rationale that the inter kingdom marriage

strategy works as long as each kingdom is identi�ed with a particular dynasty. A more democratic

structure could not sustain such an equilibrium for more generations.

7.1. Which Groups Can Leaders Approach?

Our initial use of leaders was as a concrete model of how groups coordinate. Our subsequent

analysis makes it evident, however, that leadership structure plays a key role in the formation of

coalitions and signi�cantly a�ects e�ciency and stability of equilibrium. So the key component of

leadership structure in our model,namely the issue of which groups the leaders can make credible

o�ers to, is basic. Since the incentive to be credible is given by punishment, we ask by whom can

leaders be e�ectively punished? Can a leader be punished by a group he does not care about? This

is the question, and the answer clearly depends on how leaders are motivated. We brie�y comment

on this in this section.

The point is that leaders may have motivations di�erent than that of the group they come from.

In the exogenous group model this just means that they pick the incentive compatible outcome

according to their own preference rather than the group preference. In the endogenous group model

motivations play a much deeper role. If leaders are motivated by power or the desire to rule, this

has important consequences. A leader who wants to rule the world can be punished by many groups

- having his leadership repudiated by any group is costly to such a leader. A leader who wants to

rule the world is not so likely to care only about parochial group interests. These people can be

e�ectively punished by any group because what they care about �rst and foremost is to be leaders.

Then all that is necessary for credibility in a group is that they know that even if you do not share

their preferences you are hurt if they punish you because that hurts your leadership status.

If we were to think of this accountability as arising from some more fundamental preference,

then perhaps we can ask if leaders who don't care about o�ce (getting punished) ever become

candidate leaders. In our model we explicitly rule these people out. But it may so happen that
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this caring about getting punished is simply a selection that happens in equilibrium. Self selection

of leaders is a fundamental problem. One would think that those who do not want to be elected

would often be the best for o�ce, but what we �nd is that �narcissism� helps after all since it makes

the leader sensitive to punishment - which is key to credibility.

8. Conclusion

Our results cover two di�erent areas. We study exogenously speci�ed homogeneous collusive

groups and argue strongly that the �right� notion of equilibrium is that of collusion constrained

equilibrium by giving a number of di�erent interpretations of that equilibrium. We then move on

to endogenous and heterogeneous coalitions by adopting the approach of ex post evaluation which

in the exogenous case gives rise to collusion constrained equilibrium. This leads to the notion of

coalition constrained equilibrium. Our results here are more tentative and less complete but we

think they represent a useful start.

In the exogenous homogeneous case we start from the observation that although Nash equilib-

rium does not account for collusion among subsets of players, when some subsets of players can

be identi�ed as potentially collusive groups, as is the case for example with political, ethnic or

religious groups, collusion may in�uence group behavior. On collusion we adopt the very weak

assumption that a group will collude on the within-group equilibrium which gives group members

the highest utility when several equilibria exist. We �nd that this seemingly innocuous assumption

disrupts existence of equilibrium in simple games. We show that the existence problem is due to a

discontinuity of the equilibrium set, and propose a kind of smoothing that overcomes the existence

problem and results in a reasonable equilibrium concept which builds on the presumption that a

group cannot be assumed to be able to play a certain within-group equilibrium with certainty when

at that equilibrium the incentive constraints are satis�ed with equality. This �tremble� implies that

the group may put positive probability on actions which give group members lower utility but are

strictly incentive compatible. We call the equilibrium �collusion constrained� because accounting

for the possibility of collusive behavior on the part of some subsets of players constrains viable ac-

tion pro�les, with the consequence that in general in our equilibria payo�s are lower than straight

Nash. We believe that the examples presented in the �rst half of the paper make a compelling case

for collusion constrained equilibrium as the right starting point for analyzing exogenous groups (in-

cluding dynamic models where people �ow between exogenous groups based on economic incentives

as in the Acemoglu (2001) farm lobby model, which in some sense is the case that Mancur Olson

had in mind and is of key importance in a lot of existing political economy.

Focusing on group common actions we have then explored the role of group leaders as e�ective

coordination devices, and have found that accountable leaders recommending actions would actually

play recommendations constituting the collusion constrained equilibria found earlier.

In the second part of the paper we broaden leaders' role and consider more generally leaders

competing for groups - in turn playing games between groups. Our model of leadership is coarse

- it does not spell out the �ow in information between leader and group as for example in Bolton,
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Brunnermeier and Veldkamp (2013) - but we think it captures in a stark way the game that leaders

play. Each candidate leader approaches di�erent groups and each group is approached by di�erent

leaders. Leaders recommend actions and declare utility the group will achieve if they follow, and

groups choose the leader who bids the highest utility but can punish him if the bid is unrealistically

high. This simple structure has proven to yield a rich setting to study equilibria in games between

groups.

In a series of examples, we show that equilibrium sets depend on the leadership structure, in

particular on which groups the various leaders can approach and on the rules governing entry of

new leaders - that is ultimately on institutions. For example, an e�cient equilibrium we have

studied is robust to addition of leaders caring for all groups but not to entry of additional leaders

with preferences equal to those of a particular group. Institutions in�uence the ease of collusion

within certain combination of groups and members and the ease with which new leaders emerge,

hence may have a signi�cant impact on e�ciency.

In summary we have studied situations where individual and group preferences are both at work,

and each with a non-negligible weight bears upon the �nal outcome of a strategic game. The relative

weight of the two forces is taken as given, for the balance between individual incentive constraints

and group collusion ultimately depends on the exogenously given leaders' valences. Higher valences

leave leaders' hands more free hence leave more room for group preferences, and vice versa. We

have found that even for given valences the equilibria we have studied give interesting insights into

group behavior and the impact of leaders.
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Appendix 1: Analysis of the PD Example

We analyze strongly symmetric equilibrium in the additively separable prisoner's dilemma game

C D

C 1 , 1 −γ , 1 + γ

D 1 + γ , −γ 0 , 0

with individual preferences for conformity.

Lemma 2. (i) Provided expected utility is not exactly at the midpoint of a grid interval, predicted
utility is the unique grid point in the length-d neighborhood of expected utility. (ii) In any equilib-
rium, if a leader bid exceeds expected utility by more than d/2 and is accepted the leader is punished
for sure.

Proof. (i) Recall that if expected utility is in the lower [resp. upper] half of a grid interval then
predicted utility is the lower [resp. upper] bound of the interval. Now let Euk be expected utility
and u ∈ U be the unique grid point Euk − d/2 < u < Euk + d/2; then either u < Euk < u + d/2
or u > Euk > u− d/2, and by what just recalled in both cases predicted utility is u. (ii) Suppose
u1, u2, u3 ∈ U are consecutive grid points, that expected utility Euk ∈ [u1, u2] and bid is u >
Euk + d/2. If Euk < u1 + d/2 then predicted utility uj = u1 while u ≥ u2. If Euk ≥ u1 + d/2 then
uj ≤ u2 while u ≥ u3. So in both cases u > uj and the leader is punished.

We also recall that if a group accepts a bid of u and expected utility is exactly u − d/2 the

evaluator can punish the leader with any probability for he is indi�erent between choosing u and

u− d as predicted utility. Recall that u`k is the utility o�ered to group k by leader `.

De�nition. [De�nition 5 in the text] A strongly symmetric equilibrium is one in which both group
leaders play the same strategy, o�er only D and bid greater than or equal to U0 and in which the
o�ers made by the common leader are of the form C, u,C, u.

For the remainder of the Appendix equilibrium refers to strongly symmetric equilibrium.

Lemma 3. In an equilibrium the common leader's accepted o�ers involve bids of no more than
1 + d/2, that is they never exceed U1.

Proof. If the common leader has an accepted o�er of C, u31, C, u32 each group gets at most 1 so
if the common leader bids more than 1 + d/2 to either group he is punished for certain (Lemma
2(ii)).

Recall that R(u) is the probability with which a group leader bids less than or equal to u and

Q(u) is the probability with which the common leader bids less than or equal to u. We now prove

Theorem 6 in the text - it follows from Propositions 5 and 6 below.

Lemma 4. If group leaders never recommend C and do not bid uk < U0 then if the common leader
has a pro�table deviation to D,D or D,C he also has one of the form C,C.
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Proof. Deviating to D,u31, D, u32 results in both groups playing D for sure, so is exactly the same
as deviating to C, u,C, u. If with positive probability the common leader has a bid D,u31, C, u32

accepted by group 2 then the actual utility received by group 2 when that bid is accepted must be
non-positive so to avoid certain punishment, the group leader must be bidding u32 ≤ d/2 which by
the generic assumption means u32 ≤ U0. Since the group leaders are not bidding less than U0 we
conclude in fact that the bid D,u31, C, u32 is rejected by group 2, so that it results in both group
playing D for sure. Hence deviating to D,u31, C, u32 is exactly the same as deviating to C, u,C, u,
which also results in both groups playing D for sure.

Lemma 5. A strongly symmetric equilibrium exists.

Proof. If we restrict the strategy space of the group leaders toD and the common leader to C, u,C, u
then by Nash (1951) we know that an equilibrium exists in which the two group leaders play the
same mixed strategy over their bids. This is due to the game being symmetric with respect to the
two group leaders.

Now we show that in the restricted game there is a symmetric equilibrium in which R(U0−d) =
0, that is, group leaders do not bid below U0. By the generic assumption U0 < d/2 so the group
leader cannot be punished for such an o�er, because by recommending D his group cannot get less
than 0. This implies that the group leader switching all bids ukk < d/2 to U0 weakly dominates
the original plan since for the group leader D strictly dominates C. Moreover, if there is positive
probability of an o�er by the common leader with with u ≤ d/2 the group leader does strictly
better by switching, so in equilibrium this is not the case. In other words all o�ers by the common
leader with u ≤ d/2 are rejected by both group leaders with probability 1. Hence a group leader
shifting all bids uk < d/2 to U0 does not change the play path, nor does it matter to the other group
leader. We just need to check that we have not introduced an incentive for the common leader to
underbid the group leader: however a bid by the group leader with u ≤ d/2 will not be punished,
and an underbid against the new strategy loses for sure, so is the same as bidding u against the
old strategy and that was not an improvement for the common leader.

Next we show that the group leaders have no incentive to o�er C. Consider the bid C, ukk, and
observe that if D,ukk is bid instead it wins exactly when C, ukk would have. Hence if C, ukk has
positive probability of winning the leader does strictly better by bidding D,ukk.

Finally we show that the common leader has no incentive to deviate to the strategies we have
excluded. We showed in Lemma 4 that we need only consider deviations by the common leader of
the form C,C. So we need only show that if there is a pro�table deviation of the form u31, u32 then
there is one of the form u, u. Assume without loss of generality that u31 < u32. Expected utility of
group k if it accepts this bid is uk = R(u3,−k−d)−γ(1−R(u3,−k−d)) = (1+γ)R(u3,−k−d)−γ. Since
the o�er is o� the equilibrium path, we may assume indi�erent evaluators punish with probability
1, so it must be that u3k < (1+γ)R(u3,−k−d)−γ+d/2 so that common leader is not punished. His
utility is then R(u31−d)R(u32−d)+R(u31−d)(1−R(u32−d))/2+(1−R(u31−d))R(u32−d)/2 =
(R(u31 − d) +R(u32 − d))/2.

We also have u32 < (1 + γ)R(u31 − d) − γ + d/2 ≤ (1 + γ)R(u32 − d) − γ + d/2 . Hence the
o�er u32, u32 is also unpunished and gets utility R(u32− d) ≥ (R(u31− d) +R(u322 − d))/2, so if the
deviation u31, u32 is pro�table, so is u32, u32 .

Now we analyze strongly symmetric equilibrium.

Notation. We now let uk be the highest bid that leader k plays with positive probability.

Also, set q(u) = Q(u) − Q(u − d) as the probability that the common leader bids exactly u and
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for Q(u) > 0 de�ne H(u) ≡
∑

u3≤u q(u3)P (u3 − d)/Q(u), which is the probability that a group

cooperates conditional on the common leader bidding less than or equal to u.

Lemma 6. The equilibrium expected utility of a group when its leader bids U1 is (1 + γ)H(U1).

Proof. Since bidding U1 beats the common leader for sure, the group will defect for sure, so will
receive utility equal to the probability that the other group leader is outbid by the common leader
H(U1) times the payo� from playing D against C which is 1 + γ.

Lemma 7. There can be no equilibrium bid that wins with probability 1 and is punished with
probability 0; moreover, in equilibrium all leaders have a positive probability of winning.

Proof. If the group leaders never win the bidding then they get 1. In this case if a group leader
were to bid U1 he would win for sure, get 1 +γ for sure, and since 1 +γ > 1 not get punished. This
contradicts the fact that the group leaders only get 1 in equilibrium.

If the common leader could make a bid that wins with probability 1 and does not get punished
he would receive 1 for certain, so his equilibrium utility would have to be 1. This implies that the
group leaders never win the bidding, which we just showed is impossible.

Suppose that the common leader never wins the bidding. Then the actual utility received by
all the players is 0, so that no leader bids more than d/2 with positive probability. But then the
common leader can bid U1 + d and win with probability 1 without being punished, which we just
showed is impossible.

Finally, if a group leader could make a bid that wins with probability 1 and does not get
punished he would get (1 +γ)H(U1). On the other hand, any bid u < U1 would receive strictly less
utility. Hence the common leader never wins the bidding, which we just showed is impossible.

Lemma 8. In equilibrium u3 = u1 = U1, the unique grid point 1− d/2 < U1 < 1 + d/2.

Proof. u3 ≤ U1 is Lemma 3. If u1 < 1− d/2 then the common leader can bid u1 + d, win for sure
and not be punished so ū1 ≥ U1, hence ū1 ≥ ū3. Neither can u1 > u3 be true. Since ū1 wins
with probability 1 we know by Lemma 7 that it must be punished with positive probability. Since
this probability cannot be one either it requires the evaluator to be indi�erent about punishment.
So the expected payo� from following the action must equal the bid minus d/2. By bidding ū3
instead the group leader continues to win with probability 1, generates the same outcome but avoids
punishment. Finally if u3 > u1 then it must be that 1 + d/2 = u3 and 1− d/2 = u1 which is ruled
out by the generic assumption on the grid..

Proposition 5. The equilibrium probability a group cooperates, that is H(U1), is given by

1− d
1 + γ

≤ H(U1) =
U1 − d/2

1 + γ
≤ 1

1 + γ

Proof. When a group leader bids U1 = u3 he wins for sure and group utility is (1+γ)H(U1) (Lemma
6). Since he wins for sure he must be punished with positive probability, and since he plays this bid
with positive probability we must have (1 +γ)H(U1) = U1−d/2 so that the evaluator is indi�erent
to punishing him. Inequalities follow from 1− d/2 < U1 < 1 + d/2.

Lemma 9. If u has positive probability of acceptance for the common leader in equilibrium then

R(u− d) ≥ u+ γ − d/2
1 + γ

.
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and if it has positive probability of acceptance for the group leaders in equilibrium then

H(u) ≥ u− d/2
1 + γ

.

Proof. These are the conditions that the leaders not be punished with probability 1. The �rst
follows from the fact that if common leader bid is accepted the group expected utility is R(u−d)−
γ(1−R(u− d)) = (1 + γ)R(u− d)− γ (and Lemma 2). The second is analogous.

De�nition 7. u ∈ U is a positive point for a leader if in equilibrium the leader plays it with positive
probability and is punished with positive probability.

Lemma 10. If u is a positive point for the common leader then the group leaders play u− d with
positive probability; if u is a positive point for the group leaders then the common leader plays u
with positive probability. At a positive point for the common leader

R(u− d) =
u+ γ − d/2

1 + γ
.

At a positive point for a group leader

H(u) =
u− d/2
1 + γ

.

The point U1 = u1 = u3 is a positive point for both types of leaders.

Proof. The �rst part just says that a leader should not be able to lower his bid, leave chance of
winning unchanged and reduce probability of being punished. Equalities follow from the fact that
if u is a positive point then expected utility must be exactly u− d/2. The point u1 = u3 is played
by both types of leaders with positive probability by de�nition, as it is the largest such point. If
the group leader plays u1.he wins with probability 1 hence by Lemma 7 he must be punished with
positive probability. If ū3 were unpunished when accepted then the common leader should play it
with probability 1 since the common leader does strictly better by playing u3 then any other bid;
this cannot happen in equilibrium.

Lemma 11. The equilibrium probability of common leader bids satis�es

Q(u− d) =
R(u− d)−H(u)

R(u− d)−H(u− d)
Q(u).

If u is a positive point for both leaders then and u− d is a positive point for the group leaders then

Q(u− d) =
γ

γ + d
Q(u).

Proof. We have H(u)Q(u) =
∑

u3≤u q(u3)R(u3 − d), so

H(u)Q(u)−H(u− d)Q(u− d) =
∑
u3≤u

q(u3)R(u3 − d)−
∑

u3≤u−d
q(u3)R(u3 − d)

= q(u)R(u− d) = (Q(u)−Q(u− d))R(u− d)

At positive points we use the values of R and H given above.
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Proposition 6. There is a unique strongly symmetric equilibrium. In this equilibrium no leader
bids below U0. For U0 ≤ u < U1

R(u) =
u+ γ + d/2

1 + γ

w ith R(U1) = 1 and for U0 < u ≤ U1

Q(u) = (γ/(γ + d))(U1−u)/d

with

Q(U0) = (γ/(γ + d))(U1−U0−d)/d
(

γ

U0 + γ + d/2

)
.

Neither leader is punished for bidding U0 and both leaders are punished for each higher bid.

Proof. Recall that u not being a positive point means that u is played with probability zero or
is played with positive probability and punished with probability zero if accepted by at least one
group. For each type of leader let û` be the largest point below u` = U1 that is not a positive point
for that leader, and let û = max{û1, û3}. De�ne

ˆ̀=

{
1 if û1 ≥ û3
3 if û1 < û3

First ˆ̀plays û with strictly positive probability and is not punished for doing so; neither player
has a positive point at or below û. This follows from Lemma 10: in case ˆ̀ = 1, since û + d is a
positive point for the common leader then the group leaders play û with positive probability; in
case ˆ̀ = 3, since û is a positive point for the group leaders then the common leader plays û with
positive probability. It follows directly that û is not punished for ˆ̀. So ˆ̀ cannot have a positive
point below û: it would be strictly better to switch to û.

Suppose ˆ̀ = 1. We �rst show that û must also be accepted with positive probability. Suppose
not: then the common leader does not bid anything below his positive point û+d. By the de�nition
of H we get,

H(û+ d) = R(û)

Now since û + d is a positive point for both the common leader and the group leader it must be
that,

û+ d− d/2
1 + γ

= H(û+ d) = R(û) =
û+ d+ γ − d/2

1 + γ

a contradiction.
So if ˆ̀ = 1 then any positive probability o�er by 3 at or below û must lose with probability 1:

if not it beats some positive probability o�er of the group leader, who should switch to û not be
punished and strictly increase the probability of winning; this also implies that 3 does not have a
positive point at or below û: if so 3 could lose equally well by bidding less and avoid punishment.

As a result H(û) = 0, which along with Lemma 9 gives

0 = H(û) ≥ û− d/2
1 + γ

This implies that û ≤ d/2, which because the equilibrium is simple implies û = U0. So if ˆ̀ = 1 it
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must be that û = U0.
Next, suppose ˆ̀ = 3. Firstly it must be that the bid û wins with positive probability for the

common leader. Since otherwise R(û − d) = 0, implying that H(û) = 0. But since û is a positive
point for the group leaders we get

H(û) =
û− d/2
1 + γ

a contradiction.
Then any positive probability o�er by 1 strictly below û must lose with probability 1: if not

it beats some positive probability o�er of the common leader, who should switch to û not be
punished and strictly increase the probability of winning; this also implies that 1 does not have a
positive point strictly below û since again, it would be better to lose by bidding less and avoiding
punishment.

From this construction since the group leaders lose with probability 1 bidding strictly below
û, let ũ be the highest group leader bid with positive probability strictly below û. By de�nition
there are no positive probability o�ers by the group leader above ũ and at or below û − d so
R(ũ) = R(û−d). Moreover, for the same reason for ũ < u3 ≤ û we have R(u3−d) = R(û−d). For
u3 ≤ ũ we must have q(u3) = 0 since otherwise the group leaders would not lose with probability 1.
By de�nitionH(û)Q(û) ≡

∑
u3≤û q(u3)R(u3−d) =

∑
ũ<u3≤û q(u3)R(u3−d) =

∑
ũ<u3≤û q(u3)R(û−

d) = Q(û)R(ũ) or H(û) = R(ũ) = R(û − d). Since û is a positive point for the group leader, we
know from Lemma 10 that

R(û− d) = H(û) =
û− d/2
1 + γ

.

Since û has positive probability of acceptance for the common leader by Lemma 9

R(û− d) ≥ û+ γ − d/2
1 + γ

.

Hence we have the inequality

û− d/2
1 + γ

= R(û− d) ≥ û+ γ − d/2
1 + γ

which is impossible. Hence we conclude that there is no positive probability bid by group leaders
strictly below û. But this implies that 3 loses with probability 1 by bidding û, contradicting our
earlier �nding that if l̂ = 3 then the bid û wins with positive probability for the common leader.
So it cannot be that ˆ̀= 3.

At the bottom we have

H(U0 + d) =
U0 + d/2

1 + γ
=

∑
u3≤U0+d

q(u3)R(u3 − d)/Q(U0 + d) = q(U0 + d)R(U0)/Q(U0 + d)

along with

R(U0) =
U0 + γ + d/2

1 + γ

and from Lemma 11
Q(U0 + d) = (γ/(γ + d))(U1−U0−d)/d.

Then
U0 + d/2

1 + γ
(γ/(γ + d))(U1−U0−d)/d = q(U0 + d)

U0 + γ + d/2

1 + γ
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from which

q(U0 + d) =
U0 + d/2

U0 + γ + d/2
(γ/(γ + d))(U1−U0−d)/d

Since the equilibrium is simple, nobody bids below U0 so

Q(U0) = q(U0) = Q(U0 + d)− q(U0 − d) = (γ/(γ + d))(U1−U0−d)/d
(

1− U0 + d/2

U0 + γ + d/2

)
Since the common leader must be indi�erent across the bids she mixes over, her expected payo�

from any of those bids must be 0, since that is the payo� she gets from making the lowest bid,
namely U0. Making a bid greater than U1 would result in punishment with certainty, a worse
outcome. Bidding less than U0 is not a pro�table deviation either since it loses with certainty.

For the group leader, expected payo� from bidding U0 is

q(U0)(0) +
∑

U0<u≤U1

q(u)[R(u− d)(1) + (1−R(u− d))(−γ)]

A lower bid (that must therefore always lose) would instead give a payo� of

q(U0)(−γ) +
∑

U0<u≤U1

q(u)[R(u− d)(1) + (1−R(u− d))(−γ)]

It therefore does not pro�t the group leader to make a bid lower than U0. Finally the group
leader wouldn't bid greater than U1 since it would result in certain punishment.

For the continuum limit we have

Theorem. [Theorem 7 in the text] The limit of the unique strongly symmetric equilibrium as d→ 0
is given by

R(u) =
u+ γ

1 + γ

w ith R(1) = 1 and for 0 ≤ u ≤ 1
Q(u) = e(u−1)/γ .

Proof. Analyzing (γ/(γ + d))(U1−u)/d by taking logs we have (U1 − u)[log γ − log(γ + d))]/d →
(u− U1)/γ.

We now prove robustness of this equilibrium:

Proposition. [Proposition 1 in text] The equilibrium of Theorem 6 in the conformist prisoners
dilemma is robust.

Proof. Suppose a new leader makes a bid of V1 ≥ V2 to group 1 and group 2 respectively with
recommendation a1, a2, where he is assumed to have a smaller valence than either the group or
common leader. For existing leaders, we let u be the common leader bid and u1, u2 the group
leaders bids.

Notice that if a leader who can talk to just one group has a winning bid, so does a leader who
can talk to both groups, since he can always intentionally lose the bidding in either group. The
following is the table of possible outcomes where ∗ means that the new o�er does not win in either
group.
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u1 < V1, u2 < V2 u1 < V1, u2 ≥ V2 u1 ≥ V1, u2 < V2 u1 ≥ V1, u2 ≥ V2
u < V2 a1, a2 a1, D D, a2 ∗

V2 ≤ u < V1 a1, C a1, C −D D,C ∗
u ≥ V1 ∗ ∗ ∗ ∗

If group 2 accept the o�er, the only two possibilities are a1, a2 and D, a2 so that if D is proposed
to group 1 then conditional on 2 accepting the o�er, group 2 either gets 0 or −γ, and in either
case honesty - in the sense of avoiding punishment for sure - compels the new leader to lose the
bid. Hence the new leader in this case is bidding only to group 1 and is bidding D. Conditional on
the bid winning in group 1 the fact that he beat the group 1 leader contains no information about
group 2 play, so he faces exactly the same distribution for group 2 as if the group 1 leader bid
U1− d, which is to say the actual utility received by group 1 is U1− d/2 so it seems the new leader
can't bid D to group 1 and win the bidding with positive probability. Hence the only possible bids
(that won't lose with probability 1 or be punished with probability 1) by the new leader are C,D
and C,C.

If V1 = V2 then by the same reasoning the new leader can't bid D to group 2. So the only
possibilities are: a1 = a2 = C; V1 > V2 > U0,a1 = C,a2 = D; V2 = U0

Suppose 2 accepts the bid, then conditional utility of the group is R(V1−d)u(C, a2)+[1−R(V1−
d)]u(D, a2) that is R(V1 − d)[u(C, a2)− u(D, a2)] + u(D, a2). If a2 = C then R(V1 − d)[u(C,C)−
u(D,C)] + u(D,C) = R(V1− d)[1 + γ]− γ = V1+γ−d/2

1+γ [1 + γ]− γ = V1− d/2 which is indi�erent so
the evaluator can punish with probability 1, so this case is impossible. If on the other hand a2 = D
then R(V1 − d)[u(C,D)− u(D,D)] + u(D,D) = (1 + γ)V1+γ−d/21+γ = V1 − d/2 + γ > V2 − d/2 + γ.

So the remaining cases are: V1 > V2,a1 = C,a2 = D; and V2 = U0. Observe that if the leader
cannot make a credible bid to group 1 when V2 = U0 then he cannot be better o� by also telling
group 2 to defect and winning some of the time. So we are left to consider the case V2 = U0. Since
D is dominant for group 1 if there is a credible bid for group 1, it must be when the leader tells
group 1 to play D. So: can he tell group 1 to play D and promise them some utility V1 when he
makes a bid only to that group? The negative answer to this question is contained in the �rst part
of this proof. The conclusion is then that any bid that the new leader can make that is accepted
with positive probability results in punishment with probability 1 (assigning the evaluator to punish
with probability 1 when indi�erent). So a new leader will not enter, the equilibrium is robust.

Appendix 2: Defection Probability Bound in Transfer Games

Theorem (Theorem 8 in text). If ρ is a coalition constrained equilibrium of a transfer game then

ρ(D,D) + min{ρ(C,D), ρ(D,C))} ≤ γ + d+ v − v3
1 + γ

We use the following

Lemma 12. If an o�er of ujk is accepted from leader j by group k and ajk = C then ujk ≤ U1.

Proof. Since group k by accepting the o�er gets at most 1 if a leader bids more than U1 he is
punished for certain and this is impossible in equilibrium.

Proof of Theorem 8. Let Ukk be the highest positive probability bid of group leader k when o�ering
D or u if he always o�ers C. If Ukk + v < U1 + v3 for both group leaders then the common leader
can o�er C,U1, C, U1and guarantee that both groups cooperate, so avoid punishment and get a
utility of 1. This is a strict improvement for the common leader unless the equilibrium is always

37



cooperate, which is impossible.16 Hence we conclude that for one group leader k we must have
Ukk ≥ U1− (v− v3) ≡ U1. Note that U

kk ≥ U1− (v− v3) and (v− v3) < d imply Ukk ≥ U1. Note,
moreover, that group leader k does not have a bid u > Ukk (by de�nition paired with C) accepted
with positive probability, since from v − v3 < d we get Ukk > U1 − d hence u > Ukk ≥ U1 which
implies by Lemma 12 that he cannot recommend C and have it accepted.

De�ne the unconditional equilibrium defection rates Υ1 = ρ(D,D)+ρ(D,C) and Υ2 = ρ(D,D)+
ρ(C,D) and the corresponding defection rates Υk(E ) conditional on event E . If the common leader
bids u3k ≥ Ukk + v − v3 and there is a chance it is accepted then a3k = D by the lemma since
u3k ≥ Ukk + v − v3 > U1. Then (1 + γ)

(
1−Υ−k(u

3k)
)

+ d/2 ≥ U1 otherwise he is punished for
sure. Since any such u3k bid by the common leader in fact wins for certain we see that

Υ−k(u
3k) ≤ 1− U1 − d/2

1 + γ
.

Averaging over all the u3k ≥ Ukk + v − v3 we see that this implies

Υ−k(u
3k > Ukk + v − v3) ≤ 1− U1 − d/2

1 + γ
.

Moreover, the most obtainable for group leader k by bidding D,Ukk is no greater than (1 + γ)(1−
Υ−k(u

3k ≤ Ukk)), or

(1 + γ)(1−Υ−k(u
3k ≤ Ukk + v − v3)) ≥ Ukk − d/2 ≥ U1 − d/2

Υ−k(u
3k ≤ Ukk + v − v3)) ≤ 1− U1 − d/2

1 + γ
.

Since the unconditional probability is an average of the two conditional probabilities and U1 < U1,
we conclude that

Υ−k ≤ 1− U1 − d/2
1 + γ

.

Hence

ρ(D,D) + min{ρ(C,D), ρ(D,C))} ≤ 1− U1 + v3 − v − d/2
1 + γ

=
γ − v3 + v + 1− U1 + d/2

1 + γ
≤ γ − v3 + v + d

1 + γ

as indicated.

Web Appendix

Correlation and Symmetry

We have so far supposed that the groups are homogeneous and that they choose only symmetric

mixed strategies. We now wish to relax both of those assumptions. We �rst continue to assume that

the group is homogeneous but allow a broader set of strategies. Then we show how the resulting

16If there was such an equilibrium then it would be necessary the case that group −k cooperates regardless of the
bid of group k: in this case group leader k can o�er D, 1 + γ, avoid punishment and be strictly better o�.
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model can be extended to heterogeneous groups in a way that is consistent with the homogeneous

group model.

We have assumed that the strategies available to group k are a �nite subset AkR of symmetric

mixed strategies, while the deviations available to individual members are the pure strategies Ak

or the special strategy ak0 meaning play the group mixed strategy ak. Notice, however, that the

assumption of symmetric mixed strategies is limiting. For example, if a group of two members is

playing a hunter-gatherer game in which members choose between hunter and gatherer, and get 0

for agreeing, and the hunter gets 2 and the gatherer gets 1 if they specialize, the unique symmetric

mixed equilibrium gives an expected utility to each member of 2/3 while a public randomization

over the two asymmetric pure Nash equilibria gives an expected utility to each member of 3/2. In

the game of chicken, for another example, there is a correlated equilibrium that gives both players

more than any public randomization over Nash equilibria. It seems plausible that groups would

choose to use correlating devices to achieve these superior results. This leads us to extend the

model to include correlated strategies by each group.

In Section 3 we took the space of deviations to be Ak ∪ {ak0}. By rede�ning AkR and the space

of deviations we can extend the model to incorporate correlated strategies in a straightforward way.

First we take AkR to be an arbitrary �nite subset of symmetric correlated strategies for the group:

that is, a probability distribution over pro�les of individual actions. Then we de�ne the space of

deviations Dk to be maps di : Ak → Ak from pure actions to pure actions with the interpretation

that di(ak) is the action chosen by member i when he is told to play ak. Here the identity map

plays exactly the role that ak0 played in the original model. With this change all the existing results

and de�nitions remain unchanged.

Extending the model to correlated strategies also enables us to incorporate asymmetries in a

straightforward way. First, take AkR to be an arbitrary �nite subset of the correlated equilibria

- not necessarily symmetric. We assume utility has the form ui(di, ak(i), a−k(i)) where di ∈ Dk(i)

and ak(i) ∈ Ak(i)R, a−k(i) ∈ A−k(i)R are no longer required to be symmetric, and individuals may

no longer be homogeneous. The group is now assumed to have an exogenously speci�ed objective

of weighted sum of individual utility: Uk(ak, a−k) =
∑

i|k(i)=k ωiu
i(ak0, a

k, a−k), and if we wish we

may index the valences vi > 0 by individual rather than by group. From a mathematical point of

view, the only change needed to the existing model is that in the leadership version the evaluator

must choose a vector of deviations ai|k(i)=k and should equally weight the utility of each member of

the group17, while the leader should be punished if the evaluator chooses any deviation other than

ai0 on behalf of any group member. We refer to this notion as asymmetric collusion constrained

equilibrium.

Given the asymmetric model, suppose the game is in fact symmetric - we would like to know that

the new notion of equilibrium is consistent with the old notion. Suppose that the weights ωi = 1

17Any strictly positive vector of weights is �ne: we specify equal weights for de�niteness. The point is that for the
evaluator the optimal choice of each d is independent of the other choices.
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and that the valences vi = vk(i). Suppose also that for every correlated strategy ak ∈ AkR the set

AkR also includes the uniform public randomization over all correlated strategies which permute

the identities of the group members in ak. In this case we say that AkR contains a symmetric

model. Then we can show that the new notion of asymmetric collusion constrained equilibrium

is consistent with the old notion of symmetric collusion constrained equilibrium in the following

sense:

Theorem 12. Suppose that AkRcontains a symmetric model. Then there exists an asymmetric
collusion constrained equilibrium α̃ that is symmetric and is a collusion constrained equilibrium
with respect to the subset of AkR that is symmetric. Conversely if α̃ is a collusion constrained
equilibrium with respect to the subsets of AkR that are symmetric then it is an asymmetric collusion
constrained equilibrium.

Proof. To show asymmetry implies symmetry, we construct the symmetric equilibrium from an
arbitrary asymmetric equilibrium. Given a collusion constrained (or leadership) equilibrium - not
necessarily symmetric - for each positive probability realization of the group public randomization
device (or equivalently recommendation of the leader) we may replace the recommended pro�le ak

with the uniform public randomization over all permutations of the names of the group members,
ãk. By assumption no other group cares about this, and since the incentive constraints are violated
by no more than vk at ak for any group member k(i) = k the same remains true for ãk. Moreover,
Uk(ãk, α−k) = Uk(ak, α−k) since each permutation of group member utilities yields exactly the
same value. Hence ãk is also an asymmetric collusion constrained equilibrium. Moreover, if ãk gave
less utility than some symmetric âk that violates the incentive constraints by strictly less than vk

then so would ak. Hence it is a symmetric collusion constrained equilibrium.
Now suppose that α̃ is a collusion constrained equilibrium with respect to the subsets of AkR that

are symmetric and let ãk be a positive probability realization of the group public randomization
device. We have to show that there is no âk ∈ AkR that violates the incentive constraints by
strictly less than vk and has Uk(âk, α̃−k) > Uk(ãk, α̃−k). Suppose instead that there is such an
âk ∈ AkR. Consider the uniform randomization over permutations of group members of âk and
denote it by ak. Then this also violates the incentive constraints by strictly less than vk and has
Uk(ak, α̃−k) = Uk(âk, α̃−k) > Uk(ãk, α̃−k). But by construction ak is symmetric and this then
contradicts the fact that ãk had positive probability in equilibrium.
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