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Abstract

In order to model the subjective uncertainty of a player over the behavior

strategies of an opponent, one must consider the player i’s beliefs about the opponents’

play at information sets that player i thinks have probability 0.   This erratum uses

“trembles” to provide a definition of the convex hull of a set of behavior strategies.  This

corrects a definition we gave in [5], which led two of the solution concepts we defined

there to not have the properties we intended.
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1. Introduction

Rationalizability and related concepts are defined and characterized in terms of

sets of strategies for a player that other players think he might use. In the strategic form

each player’s beliefs about the play of an opponent are given by a probability measure

over this set, and each such measure maps to a point in the convex hull of the set of

possible strategies, as in Bernheim [3] and Pearce [9]. Consequently, we can take this

convex hull as a model of what players might think about other players. In extensive-

form models that use behavior strategies, the correct way to model beliefs and map them

to strategies is less transparent.  Geir Asheim has pointed out to us that in Dekel,

Fudenberg and Levine [5] we give an incorrect definition of convex combinations of

behavior strategies. As a result two of the concepts that we defined (sequential

rationalizability and sequentially rationalizable self-confirming equilibrium) do not have

the properties that the paper implies and intended.  This erratum uses “trembles” to

provide a definition of mixtures that, when embedded in our definitions of sequential

rationalizability and sequentially rationalizable self-confirming equilibrium, makes them

function in the way we intended.1 In particular, with the corrected definition it will be the

case that when a player thinks that only a single behavior strategy is consistent with

rational play by his opponent, his beliefs about that opponent correspond to that unique

behavior strategy. Consequently, sequential rationalizability implies backwards induction

in finite games of perfect information with generic payoffs.

Instead of using trembles, Asheim and Perea [1] use lexicographic probability

systems (extending Blume, Brandenburger and Dekel [4]) to model players’ beliefs in

extensive-form games; among other things they use these systems to provide a correct

definition of sequential rationalizability for two-player games. Battigalli [3] models

beliefs in extensive-form games using Myerson's [8] conditional probability systems, to

which lexicographic probability systems are closely related.  We prefer to use trembles

instead because we already used them in another part of our 1999 paper, and because for

                                                
1 As we explain below, the error does not matter for the solution concept of rationalizable self-confirming
equilibrium, which was the primary focus of that paper.
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our purposes it is not necessary to track the relative likelihoods of various zero-

probability events.2

2. Preliminaries

To save space we will assume that the reader is familiar with most of the notation

and terminology of Dekel, Fudenberg, and Levine [5], and so we will only restate a few

of the most relevant definitions. An assessment ai  for player i is a probability distribution

over nodes at each of his information sets.  A belief for player i is a pair bi ≡ (ai, πi
-i),

consisting of i’s assessment over nodes ai, and i's expectations of opponents’ strategies πi
-i

= (πi
j)j≠i.

3  In that paper we defined belief closed as follows:

Definition 2.2: A belief model V  is belief closed if for every ( ,( , ))π πi i i
i

ia V− ∈ , πi
j arises

from a mixture over strategies in the set { ’ |( ’ , ) }π πj j j j jb V b∈  for some belief .

This definition is silent on what it means to say that a behavior strategy “arises

from a mixture” over other behavior strategies; the paper elaborates in footnote 11, which

says:

“A behavior strategy π j  is generated by a mixture ( , )a a1-  over π j ’ and

π j ’’ if for every π − j , the distribution over terminal nodes induced by

( , )π πj j−  equals the ( , )a a1-  mixture over the distributions induced by

( ’, )π πj j−  and ( ’’, )π πj j−  respectively.”

This “clarification” is incorrect. The problems arise in defining the behavior of πi
j at

information sets for j that are not reachable under any of the strategies in jV .4  Such

information sets are irrelevant for concepts that place no restrictions on play at

                                                
2 Contemporaneously with this paper, Asheim and Perea developed a trembles-based alternative to their use
of lexicographic probability systems.
3 The assumption that player i’s expectations about an opponents’ play corresponds to a strategy profile
incorporates the implicit restriction that opponents randomize independently.  Note that what we call an
“assessment” is what Kreps and Wilson [8] call a “system of beliefs for player i,” and that our “belief” is
similar to what they call an “assessment.”
4 That is, an information set is unreachable under 

J
Q  if there is no profile 

J
Q
�

 for j’s opponents such that

the information set is reached with positive probability.
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information sets that the strategy precludes, but the mistake is important for concepts

such as our sequential rationalizability that impose restrictions on play at all information

sets.

For example consider the game in Figure 1:

<put Figure 1 here>

 The backwards induction profile is π 1 = (in, up) and π 2 = (across); the profile

((out, down), (down)) is an imperfect Nash equilibrium.  Only up is sequentially rational

at player 1’s second information set, so the set of sequentially rational behavior strategies

for player 1 must contain only strategies that play up at this information set.   Consider

the sets 
�

�� � 	� 	6 OUT UP DOWN� ,
�

� �� � 		6 DOWN OUT DOWN� . Since the strategy (out,

down) is equivalent in the strategic form to (out, up), it “arises as a mixture over” the set

of player 1’s strategies in 
�

6 . Consequently, this pair is sequentially rational and belief

closed when “arises from” is defined as in footnote 11. In particular, sequential

rationality and belief-closed with the original definition does not imply backwards

induction.

3. The Extensive-Form Convex Hull

We therefore propose the following definition of the “convex hull” of behavior

strategies, which corrects and builds from our previous definition by using “trembles” to

make sure that every information set of player i is reachable.5   When working with

strictly positive behavior strategies, there are no unreached information sets.  In this case

the definition of “generated by a mixture” from our previous paper is adequate.

Definition:  Strategy iπ  is in the extensive-form convex hull of a set 
I

1  of behavior

strategies for player i if there is an integer k, strategies { } ,..π i
j

j k=1  in 
I

1 , sequences of

                                                
5 Here and subsequently, we give the space of behavior strategies the norm topology, so that a sequence of
behavior strategies converges iff it converges pointwise.
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strictly positive behavior strategies π πi
j n

i
j, → , and a sequence α αn →  of probability

distributions on [1,…, k], such that the behavior strategies n
iπ  generated by the convex

combination of �� �� �� � ����N N K N

I I I
Q Q Q  with weights �� �� �� � �N N K NB B BK converge to π i .

 We let α  vary along the sequence so that the extensive-form convex hull will be

closed. To see why the set would not be closed if the definition used only a fixed α ,

consider the following one-player game. Player 1 has two moves in a row: The first

choice is In or Out; Out ends the game, In gives him a second choice of L or R. Strategy

1 is (Out, L), 2 is (In, R). Now suppose that the definition of convex hull used only fixed

weights, and let ��B B�  be the weights on strategies 1 and 2.  Since only strategy 2

plays In and enables the move in the second period, the convex combination of the two

strategies with strictly positive weights is ((B Out, �� 	B� In), R), which approaches

(Out, R) as �B l . However, this is not a convex combination of strategies 1 and 2,

even for α =(1, 0). Consequently, the set of “convex combinations” by this definition is

not closed. Our definition of the extensive-form convex hull includes both (Out, L) and

(Out, R).

Definition 2.2 (revised): A belief model V is belief closed if for every ( ,( , ))π πi i i
i

ia V− ∈ ,

πi
j is in the extensive-form convex hull of the set { ’ |( ’ , ) }π πj j j j jb V b∈  for some belief .

All of the other definitions in our 1999 paper stay unchanged, modulo the change

in the definition of belief closed.   Note that the difference between the corrected

definition of belief closed and the previous one arises when for some players i and j, πi
j

induces the same distribution over outcomes as a mixture over the set

{ ’ |( ’ , ) }π πj j j j jb V b∈  for some belief , but differs from these strategies at an information

set that the strategies themselves preclude.  For this reason, the changed definition of

belief closed has only a minor effect on the concept of “rationalizability at reachable

nodes” (definition 2.3), as this concept does not require that strategies be optimal at
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information sets that the strategies themselves rule out.   In particular, while a given

belief model V  (such as the pair of singleton beliefs 1 2,V V  in the example of the last

section) can be rationalizable under reachable nodes under the old definition but not

under the new one (because it is not belief-closed), for any such V we can construct a V̂

that is belief-closed by adding to each jV  and every j jVπ ∈ , every strategy ˆ jπ  that

agrees with jπ at nodes that are reachable under jπ .  Every added strategy is a best

response at reachable nodes to the same beliefs that rationalized the original jπ , and

since the set V was belief closed under the old definition, V̂  is belief closed under the

new one.6  In particular, the change in definitions has no effect on whether a strategy

profile π̂  is a rationalizable self-confirming equilibrium, as this requires that there exist a

belief model V that is rationalizable at reachable nodes, such that for all players i, every

( , )i i ib Vπ ∈  has the distribution of outcomes induced by π̂ .  Thus Theorems 2.1, 4.1, and

all of the examples in Section 3 are unaffected by the change.

As we noted earlier, the change in definition does matter for the concept of

sequential rationalizability, which requires that strategies in the belief model be

rationalized at every information set, and it has a similar impact on the concept of a

sequentially rationalizable self-confirming equilibrium.  In particular, because the

extensive-form convex hull of a singleton set consists solely of the single strategy in that

set, the unique sequentially rationalizable profile in finite games of perfect information

with generic payoffs is the one given by backwards induction.7 Despite this change,

theorem 4.2, which is the only result in [5] that refers to concepts using sequential

                                                
6 Note that when a model V that is rationalizable at reachable nodes under the old definition, the model

formed by enlarging the set of strategies in each jV  to its extensive-from convex hull need not be

rationalizable at reachable nodes under the corrected definition. Although the new model will be belief-
closed, the strategies introduced need not be rational at reachable nodes, and indeed they may be strictly
dominated.
7 Bernheim [3] defines subgame rationalizability, and argues that it yields backwards induction in generic
game of perfect information.
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rationality, is correct as stated, since the elaborations used in the proof have a type that is

indifferent between all actions at every information set.

Note finally that that even if a strategy profile π  is sequentially rationalizable as

a singleton set (i.e., there are beliefs ib  for each player i such that the sets 1 1 1{( , )}V bπ= ,

2 2 2{( , )}V bπ= , etc. is sequentially rationalizable) it need not be a sequential equilibrium.

While we have assumed that each player’s assessment over nodes in his information sets

is consistent in the Kreps-Wilson sense of being derivable from the limit of Bayesian

beliefs from full-support strategies, we have not required that all players’ assessments be

consistent with a single sequence of totally mixed strategy profiles, and it is known, see

for instance Example 8.5 in Fudenberg and Tirole [6], that the freedom to use different

sequences to derive each player’s assessment can allow additional equilibrium outcomes.
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