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1. Introduction

The modern theory of the evolution of conventions deals with a Markov process in which there

are strong forces such as learning towards equilibrium and weaker evolutionary forces such as

�mutations� that disturb an equilibrium and lead from one equilibrium to another. There is a large

economics literature studying models of this type: just to take some recent contributions, we have

Kreindler and Young (2012), Kreindler and Young (2013) and Ellison, Fudenberg and Imhof (2014)

showing how convergence in these models may be very fast and Sabourian and Juang (2012) giving

a folk theorem for equilibrium selection. To prove theorems, the limit when weak forces are small is

analyzed. In the limit equilibria appear as recurrent communicating classes of the Markov process:

sets of states all of which are accessible to each other, but grouped into classes which are isolated

from each other. Prior to the limit - the situation of interest - the Markov process is ergodic, and

puts positive weight on all states. However some states are more equal than others, and in the

unique limit of the stationary distributions weight is placed only on the recurrent communicating

classes of the limit - and moreover, only some of these classes have positive weight - the stochastically

stable classes. In particular, while the limiting Markov process can have many classes, the limit

of the Markov processes may place weight on only one or a few classes. The literature, especially

Foster and Young (1990), Kandori, Mailath and Rob (1993), Young (1993), Ellison (2000), Cui and

Zhai (2010), and Hasker (2014) develops a set of techniques for determining which of these classes

get weight in the limit, and gives a useful picture of what the stochastic process looks like when

the weak forces are small but not zero. Roughly, the classes that have positive weight in the limit

are seen most of the time, but the system will occasionally move away from a class and back again,

or transit from one class to another.

The focus of much of the literature has been on determining which classes get weight in the limit -

and this is important to understand. But the transitions - the movement from one class to another

- are also interesting and important for economics. For example: in a model of evolution such

as that of Levine and Modica (2012) where di�erent economic and political institutions compete

with each other, the recurrent communicating classes correspond to hegemonies - a single society

that controls all economic resources - and the stochastically stable classes are the most powerful

hegemonies. There is considerable historical evidence for the existence of hegemonies: China,

the Roman Empire and so forth. In the theory - as in reality - hegemonies inevitably fall, and

eventually reappear. How the transitions take place, what kind of phases mark the crucial steps in

the transitions, is of some interest. Do the eventual winners of the con�ict appear on the scene and

battle back and forth with the hegemony for a while until they take over and establish their own

hegemony (short answer - no) or does something else happen, and if so what? Our results make

it possible to answer this question in some detail, describing the rise and fall of hegemony and the

warring states period that takes place in between. It may also serve as a guide to policy, showing

how di�erent institutions can impact transitions.
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The mathematical methods used in analyzing stochastic stability contain clues for what the

transitions might look like. In particular, stochastically stable classes can be characterized by trees

of recurrent communicating classes where the distance between classes is measured by �resistance�

and the stochastically stable classes appear as the root of trees with least total resistance. Because

of the role played by least resistant paths in this analysis, a natural conjecture is that least resistant

paths are in some sense more likely than higher resistant paths. Here we establish in exactly what

sense this is true.

The starting point is to observe that a basic feature of resistance is that if we compare the

probability of two speci�c paths when evolutionary forces are very weak, the lower resistance path

is far more likely than the higher resistance path. However, if we look at all paths from one

recurrent communicating class to another - the �quasi-direct routes� that include those that may

dawdle within the class they start from before moving on - then as a group least resistant paths are

far less likely than higher resistant paths. The reason for this is simple: it is likely to take a very

long time to reach another recurrent communicating class - in the meantime there are likely to be

many failed attempts to get there, and these attempts will typically involve some resistance. On

the other hand, consider the actual transition from one class to another, that is the paths which

leave the starting recurrent communicating class for the �nal time and which do not pass through

a third class - we call these �direct routes3.� We show that the transition to the other class is likely

to happen relatively quickly, in the sense that the set of least resistance direct routes are far more

likely than other paths.

We establish the theory in two parts: we �rst develop a set of bounds for direct routes and then

for quasi-direct routes. As a by-product, understanding these transitions also gives us clues about

the ergodic probabilities. By examining which recurrent communicating classes are reached �next�

from a given starting point we construct a straightforward recursive algorithm that gives precise

bounds on the ratio between the ergodic probabilities of all states that are �reasonably close� to

recurrent communicating classes.

To illustrate the theory we apply it to a simpli�ed version of the Levine and Modica (2012) evo-

lutionary model of con�ict and the emergence of hegemonies - some details of which are motivated

by the transition theory of Acemoglu and Robinson (2001) - and provide in particular an account

of the fall of the last Qing dynasty in China and the ensuing rise of Communism.

2. Main Results Through an Illustrative Example

We are interested in economic models that can be represented as Markov processes where some

transitions are much less likely than others. To illustrate this we start with an example of a

�standard� evolutionary model. This simple and familiar example is designed to illustrate the gaps

in current knowledge and how the results of this paper �ll those gaps. A historical application that

3Note that �direct� is sometimes used to mean �in a single transition.� Here a direct route can pass through many
transitions, but it must not pause in an ergodic class along the way. From Ellison (2000) we know that such paths
are not necessarily the quickest way of getting to the target, an issue we carefully account for.
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motivates why these gaps are interesting is examined at the end of the paper (Section 7). Consider

the 2x2 symmetric coordination game with actions G,B and payo� matrix

G B

G 2, 2 0, 0

B 0, 0 1, 1

This game has two pure Nash equilibria at GG and BB and a mixed equilibrium with probability

1/3 of G.

To put this in an evolutionary context, we assume that there are �ve players. Each player

receives a payo� equal to the average he gets in all matches against his four opponents.4 In each

period a single player is chosen with equal probability to reconsider her move; the other four play

as in the previous period. The state of the system is the number of players playing G. So the state

space Z has N = 6 states. We �rst de�ne the behavior rule representing �rational� learning5: the

player who gets to move chooses a best response to the actions chosen by the opposing players.

In addition there are independent trembles: with probability 1 − ε the behavior rule is followed,

while with probability ε the player's choice is uniform and random over all possible actions. The

presumption is that the chance of �arational� play ε is small compared to the probability 1 − ε of
�rational� play. This arational play is often called a �mutation� in the literature.

This dynamic can be represented as a Markov process on the state space Z de�ned above with

six states representing the number of players playing G. Denoting source states by rows and target

states by columns as is standard in the theory of Markov chains, the transition matrix can be

computed as6

Pε =



1− ε
2

ε
2 0 0 0 0(

1
5 −

ε
10

) (
4
5 −

3ε
10

)
4ε
10 0 0 0

0
(

2
5 −

2ε
10

)
ε
2

(
3
5 −

3ε
10

)
0 0

0 0 3ε
10

(
3
5 −

ε
10

) (
2
5 −

2ε
10

)
0

0 0 0 4ε
10

(
4
5 −

3ε
10

) (
1
5 −

ε
10

)
0 0 0 0 ε

2 1− ε
2


A critical concept in analyzing this system for ε small but not 0 is the notion of resistance.

4As Ellison (1993) points out this global interaction model converges much more slowly than if each player is
matched only with a neighbor. Here the model is intended for illustrative purposes.

5In some models such as Kandori, Mailath and Rob (1993) this rational component of the dynamic is deterministic
so can be referred to as the �deterministic dynamic.� Here, as in, Binmore and Samuelson (1997) and Blume (2003)
the revision rule is stochastic because the player who moves is determined randomly.

6Take for example the �rst diagonal entry Pε(0, 0) = 1− ε/2: if the current state is 0 then whoever is picked next
period faces 4 opponents playing B so the best response is B. With probability 1− ε the player is rational and plays
B; with probability ε the player is arational and plays B with probability 1/2. So with probability 1−ε+ε/2 = 1−ε/2
the move is B and next state will be 0. Or take the second row: the only G player is drawn with probability 1/5,
while with probability 4/5 it is one of the B players; best response is still B in any case so play probability is again
1 − ε/2 for B and ε/2 for G; hence the state remains at one G player if either the G player is chosen and plays G -
probability (1/5) · (ε/2) or a B player is chosen and plays B - probability (4/5) · (1− ε/2); the sum of these two terms
is the 4/5− 3ε/10 appearing at the second diagonal entry Pε(1, 1) in the matrix. And so on.
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Although we give a formal de�nition below, in this example the resistance is the minimum number

of transitions with probability of order ε needed to get from one state to another. For example,

the resistance of going from {1} to {0} is 0 since the transition probability is Pε(1, 0) = 1
5 −

ε
10 ,

while the resistance of going from {0} to {1} is 1 since the transition probability is Pε(0, 1) = ε/2.

Transitions with probability zero independent of ε have in�nite resistance. The resistance matrix

in this case is therefore the following:

r =



0 1 ∞ ∞ ∞ ∞
0 0 1 ∞ ∞ ∞
∞ 0 1 0 ∞ ∞
∞ ∞ 1 0 0 ∞
∞ ∞ ∞ 1 0 0

∞ ∞ ∞ ∞ 1 0


We can analyze this model giving a heuristic outline of the methods we will develop in the

paper.

1. Recurrent communicating classes for ε = 0.7

The two recurrent communicating classes consist of the singleton sets {0}, {5} - these
sets are each absorbing and here they correspond to the pure Nash equilibria of the game.

We denote the set of recurrent communicating classes by Ω = {Ω0,Ω5} = {{0}, {5}}.

2. Relation between the classes for ε > 0.

Starting in one recurrent communicating class, which comes next, how long will it take

and relatively how much time is spent at each recurrent communicating class?

Here there is only one other recurrent communicating class, so the �next one� is always

the �other one.� In the general case Corollary 3 tells us that the �next one� is one that

can be reached with least resistance. This least resistance is known as the radius. In

this example it takes 2 mutations to get from {0} to {5} and 3 to get back, so the radius

of {0} is 2 and the radius of {5} is 3.

How long it will take to get from one class to another is known from Ellison (2000) -

the main existing result concerning transitions - and is covered here in Theorem 4: it

is ε−1 raised to the power of the radius: for {0} the waiting time to {5} is of order ε−2

and for {5} the waiting time to {0} is of order ε−3. Relatively ε−1 times as long is spent

at {5} as at {0}. When there are many recurrent communicating classes computing the

relative amount of time at each is complicated: we give a constructive algorithm for

�nding it in Section 6.3.

7A closed or recurrent communicating class of a Markov process is a set with the property that there is a positive
probability of reaching any point in the set from any other and the probability of leaving the set is zero. The literature
also sometimes refers to these as limit sets.
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3. Basins.

The basin of a recurrent communicating class is the set of states for which the probability

of eventually reaching that class when ε = 0 is one. The basin of {0} consists of the
points {0}, {1}. The basin of {5} is {3}, {4}, {5}. The state {2} is in the �outer range�

of both {0} and {5} but the basin of neither: it has positive probability of reaching

either of the two recurrent communicating classes.

4. Relation between basins and classes.

The basin consists of states that are �close� to the corresponding recurrent communi-

cating class.8 By Theorem 4 during the time before reaching a new class most of the

time will be spent in the current recurrent communicating class, but there will be a

large number of periods during which the system will move to these close points and

back. From Theorem 8 the relative amount of time spent at these states compared to

the time spent in the recurrent communicating class is of the order of the di�erence

between the resistance of reaching the point and the radius. For example, starting at

{5} the radius is 3 and the resistance of getting to {3} from {5} is 2 so that the system

will spend roughly ε−1 times as much time at {5} as at {3}. From the result above,

that also means that the system spends roughly the same amount of time at {3} as at
{0} - but the nature of the time is quite di�erent. The system will remain at {0} for
long contiguous periods of time with only occasional departures, while the system will

remain at {3} for very short periods of time, but go there very frequently.

5. Transitions

How do we get from one recurrent communicating class to another? This is covered

in Theorem 3. It says that with very high probability the path will have least �peak

resistance�: such a path may leave the recurrent communicating class and return any

number of times, but during each departure from the recurrent communicating class

the resistance encountered can be no more than the radius. When the recurrent com-

municating class is left for the �nal time the path followed to the new recurrent com-

municating class must have least resistance and the transition is �very quick.� In the

example, going from {5} to {0} the path can leave {5} and return many times but the

resistance encountered during these departures cannot be greater than 3. So for exam-

ple, (5, 4, 3, 2, 3, 4, 5) can occur since it has resistance 3, but not (5, 4, 3, 4, 3, 4, 3, 4, 5)

because this has resistance 4. The �nal transition must have resistance 3, which in

this case means it must be monotone: {4}, {3}, {2}, {1}, {0} must occur in that order.

However, any of these states can recur except {2} since remaining adds no resistance.

8Strictly speaking this is true not of the basin, but only of the inner basin from De�nition 5. However in this
example the inner basin and the basin coincide.
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So, for example, (5, 4, 4, 3, 2, 1, 1, 0) is a possible transition, but (5, 4, 3, 2, 2, 1, 0) is not.

Despite the fact that the transition paths can have loops of zero resistance in them, the

expected length of the path is bounded independent of ε. This is shown in Theorem 1.

3. The Model

In the general case we are given a �nite state space Z with N elements and a family Pε of

Markov chains9 on Z indexed by 0 ≤ ε < 1. This family satis�es two regularity conditions:

1. limε→0 Pε = P0

2. for all x, z ∈ Z there is a resistance function 0 ≤ r(x, z) ≤ ∞ and constants 0 < C < 1 <

D <∞ such that Cεr(x,z) ≤ Pε(z|x) ≤ Dεr(x,z)

Notice that zero resistance is equivalent to positive probability with respect to P0 - a fact we will use

all the time - and in�nite resistance is zero probability in all Pε's. If f(ε) and g(ε) are non-negative

functions a useful notation concerning resistances is to de�ne f(ε) ∼ g(ε) if lim infε→0 f(ε)/g(ε) > 0

and lim supε→0 f(ε)/g(ε) < ∞ with the obvious convention that 0 ∼ 0. With this notation we

can then write Pε(z|x) ∼ εr(x,z). For readability we will state results in the text using this order

notation; we restate (and prove) the results with exact bounds in the Appendices.

As in the example of the previous section, we let Ω be the set of the recurrent communicating

classes of P0. We write Ωx for the recurrent communicating class containing x where Ωx = ∅ if x is

not part of a recurrent communicating class. A path a is a �nite sequence (z0, z1, . . . , zt) of at least

two not necessarily distinct states in Z and we write t(a) = t: this is the number of transitions

(zs−1, zs). The resistance of the path is r(a) ≡ r(z0, z1) + r(z1, z2) + . . .+ r(zt−1, zt).

We summarize some well known properties of P0 and Ω. Non-empty recurrent communicating

classes Ωx 6= ∅ are characterized by the property that from any point y ∈ Ωx there is a positive

probability path to any other point z ∈ Ωx and that every positive probability path starting at y

must lie entirely within Ωx. Since positive probability in P0 is the same as zero resistance, we may

equally say that from any point y ∈ Ωx there is a zero resistance path to any other point z ∈ Ωx

and that every zero resistance path starting at y ∈ Ωx must lie entirely within Ωx. An additional

useful notion is this:

De�nition 1. A set W is comprehensive if for any point z ∈ Z there is a zero-resistance path
a = (z, . . . , w) to some point w ∈W . In particular the set Ω is comprehensive.

We can give the following characterization of a comprehensive set:

Proposition 1. A set W is comprehensive if and only if it contains at least one point from every
non-empty recurrent communicating class, that is, for all Ωx ∈ Ω there exists w ∈W with w ∈ Ωx.

9In the literature it is often assumed that for ε > 0 the chain is ergodic and in our analysis of the limit ergodic
distribution in the later part of the paper we make that assumption. However for the analysis of transitions the
assumption is not needed, and it can be useful to apply the analysis to interim dynamics at states that will never be
reached again. Moreover, the assumption that the state space is �nite is not needed for the analysis of transitions
and the bounds given in the Appendix hold for countable state spaces as well as �nite state spaces - in this case when
ε > 0 there may be no long run limit at all.
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Proof. Su�ciency: for any point z ∈ Z there is a zero resistance path to some point y in some
recurrent communicating class Ωy, and from there a zero resistance continuation to the point in
Ωy ∩W which is assumed to exist. Necessity: if there is a set Ωy 6= ∅ with Ωy ∩W = ∅ then the
zero resistance path to W assumption fails: any zero resistance path originating in Ωy must remain
entirely within Ωy and hence does not reach W .

Notice that there are a great many comprehensive sets and our analysis is conditional on a

particular choice of a comprehensive set. Di�erent comprehensive sets may serve di�erent useful

purposes.

4. Direct Routes

In P0 a path that hits a point in a recurrent communicating class is then trapped in that class,

so cannot reach a target outside of that class. When ε > 0 this need not be the case. However, if a

point in an recurrent communicating class is hit then it is very likely that the path will then linger

in that recurrent communicating class passing through every point in the class many times - and

in particular through states in any comprehensive set. Hence there is a sense in which paths that

do not hit a comprehensive set must be �quick� - they cannot linger in a recurrent communicating

class. We will call such paths �direct routes�. Now any path that leaves a class Ωx contains a direct

route - the route to its �rst point in Ω \ Ωx. So we start by studying direct routes. They are a bit

like the hare in the story of the tortoise and the hare. Direct routes get to the destination quickly

- they must if they are not to fall into the forbidden comprehensive set. Because of this, as Ellison

(2000) points out, they are not very reliable: routes that linger in a recurrent communicating class

may be far more likely than direct routes to reach their destination. Such quasi-direct routes we

will study in Section 5 below.

Formally, de�ne a forbidden set W ⊆ Z for a path a = (z0, z1, . . . , zt) to be a set that the path

does not touch except possibly at the beginning and end, that is z1, . . . , zt−1 /∈W .

De�nition 2 (Direct Routes). Given an initial point x ∈ Z and sets B ⊆W , we call a non-trivial
path a from x to B with forbidden set W a direct route if W is comprehensive and the path has
�nite resistance r(a) <∞ (equivalently, positive probability for ε > 0).

For each x,B and comprehensive W there is a set of direct routes from x to B with forbidden

set W , which we denote by AxBW .10

We are interested in the following questions: how likely is the set of direct routes AxBW , which

paths in AxBW are most likely, what are these paths like and how long are they?

Results on Direct Routes

The intuition behind the results we present next is simple. Direct routes must hit the target

without falling into a comprehensive set. This is hard, hence these routes have to be quick - and

the quickest way is to make least resistance steps. This will be made precise in the following.

10The assumption that B ⊆ W is without loss of generality. We can always de�ne a forbidden set W ′ = W ∪ B
without changing the set of direct routes. Note that for given x,B,W the set of direct routes may be empty: it may
be impossible to get to B without �rst hitting W\B.
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First, to avoid triviality, we assume that AxBW 6= ∅. An important observation is that there are

typically many direct routes. Speci�cally, if there is a path (z0, z1, . . . , zt) ∈ AxBW that contains

a loop, that is, zτ = zτ ′ /∈ W for τ 6= τ ′ then AxBW is countably in�nite since the loop can be

repeated an arbitrary number of times. Notice also that if this loop has zero resistance then the

length of paths in AxBW is without bound. Never-the-less we shall see the expected length of such

paths is quite short. For nonempty A ⊆ AxBW , the �rst important fact proven in Appendix 1 is

that r(A) = mina∈A r(a) is well-de�ned (and �nite) - it is the least resistance of any path in the

set A.

The main result on direct paths characterizes their probability and length. The proof along

with detailed bounds is in Appendix 1.

Theorem 1. If A ⊆ AxBW is non-empty then Pε(A|x) ∼ εr(A) and Eε[t(a)|x,A] ∼ 1.

In particular, positive resistance direct routes are not very likely to occur as ε gets small, yet

they are unlikely to be terribly long in the sense that the expected length is bounded independent

of ε. Despite the fact that they are unlikely, these paths are important because they are needed to

get from one recurrent communicating class to another. Intuitively the reason these paths are short

is that at each point along a direct route there is a zero resistance path that leads to the forbidden

set W. The more time is spent along the route, the greater the risk of falling into the forbidden

set and fail to reach its destination. By contrast, we will see subsequently that the expected time

spent in a recurrent communicating class goes to in�nity as ε→ 0.

The order of Pε(A|x) established in Theorem 1 directly implies the other facts characterizing

direct routes.

Corollary 1. Let A = {a|r(a) = r(AxBW )} denote the least resistance paths in AxBW 6= ∅. Then

limε→0
Pε(A|x)

Pε(AxBW \A|x) =∞.

In other words, least resistance direct paths are far more likely than other direct paths. It is

also the case that all least resistance direct paths have a probability similar to each other.

Corollary 2. Let A = {a|r(a) = r(AxBW )} and a ∈ A. Then Pε(a|x)
Pε(A|x) ∼ 1.

This completes the discussion of the basic results on direct routes.

5. Transitions Between Recurrent Communicating Classes

We next study how the system is most likely to leave a recurrent communicating class, and to

which other class it is most likely to transit; then also how long it takes, and where these paths

spend their time along the way.

5.1. Quasi-Direct Routes

Ellison (2000) observes that being able to pass through every point in a recurrent communicating

class may have a profound impact on the nature of the paths. The results of this section makes this

8



precise by characterizing quasi-direct routes that spend most of the time moving about without

resistance within an initial class Ωx.

We start again with an initial point x ∈ Z in the recurrent communicating classΩx, a forbidden

set W ⊆ Z and a target set B ⊆ W . Notice that the de�nition in Section 3 implies that direct

routes from x to B with forbidden set W are not allowed to pass through all states in Ωx, since

the forbidden set W was assumed to be comprehensive. We now wish to relax that restriction, and

consider routes which are allowed to linger freely inside Ωx.
11 So we exclude Ωx from the forbidden

set, that is we assume W ∩ Ωx = ∅. Thus W cannot be comprehensive. However, we assume that

W contains at least one point from every recurrent communicating class except for Ωx. We then

call W quasi-comprehensive.

De�nition 3 (Quasi-direct Routes). A non-trivial path a from x ∈ Z to B ⊆ W is a quasi-direct
route if W is quasi-comprehensive and the path has �nite resistance.

We denote the set of such paths by QxBW . As in the direct case we assume the set QxBW is

non-empty. Again we are interested in the structure of the paths in QxBW , in particular: which

paths in QxBW are most likely, what do these paths look like, and how long are they?

Consider a path a in QxBW . The path originates at x and eventually hits B for the �rst time

without �rst hitting W . The path may return to the start point x a number of times before �nally

departing and reaching the destination B. Consequently it can be decomposed into a series of loops

starting from x and returning to x, followed by an �nal departure or exit path to B. The loops

start at x and return to x without hitting x or W in between, hence they are routes from x to x

with forbidden set W ∪ {x}. Since W is quasi-comprehensive W ∪ {x} is comprehensive and we

abbreviate these direct routes as AxxW ≡ Axx(W∪{x}) - this should not lead to confusion since W

is quasi-comprehensive and so AxxW has no other meaning. Following the loops the exit path is a

route from x to B that does not hit either x or W - that is the forbidden set is again W ∪ {x} and
so these are again direct routes which we abbreviate as AxBW ≡ AxB(W∪{x}). For a ∈ QxBW we

write n(a) for the number of loops in a (it may be that n(a) = 0). Then if n(a) > 0 we can uniquely

decompose a ∈ QxBW as a1, a2, · · · , an(a), a
+ where the ai ∈ AxxW are the loops and a+ ∈ AxBW

is the exit path; while a = a+ if n(a) = 0.12

Next we want a measure of the resistance of a quasi-direct path a ∈ QxBW . As we shall see,

for such path it is not the total resistance r(a) that matters. What matters is the peak resistance

ρ(a) = max{r(ai)|n(a)
i=1 , r(a

+)}, the greatest resistance of any of the loops or the exit path.

De�nition 4. The least peak resistance of a set Q ⊆ QxBW is ρ(Q) = mina∈Q ρ(a).

The next result shows that quasi direct routes with least peak resistance consist of a least

resistance exit path preceded by loops of weakly lower resistance:

11Notice that for the case of singleton Ωx this means the path may remain at x for some time, or leave and return
a number of times before hitting the target.

12Note that both AxxW and AxBW can contain loops from a point y 6= x in Ωx back to y provided we do not touch
x in between. One can imagine alternative decompositions without this property, but this decomposition is just a
tool for understanding how we get from x to B and technically our decomposition works well.
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Theorem 2. If a ∈ QxBW has least peak resistance so that ρ(a) = ρ(QxBW ), then it has peak
resistance equal to least exit resistance: ρ(a) = r(a+) = r(AxBW ).

Proof. Suppose ρ(a) = ρ(QxBW ). From the de�nition ρ(a) ≥ r(AxBW ) so the lemma can fail only
if there is a path ã ∈ AxBW for which r(ã) < ρ(a). But ã ∈ QxBW so this contradicts a having
least peak resistance.

5.2. Leaving a Recurrent Communicating Class

The following result (proved in Appendix 2) plays a role in the theory of quasi-direct routes

similar to that played by least resistance in the theory of direct routes in Corollary 1:

Theorem 3. Let A = {a|ρ(a) = ρ(QxBW )} denote the least peak resistance paths in QxBW 6= ∅.
Then limε→0

Pε(A|x)
Pε(QxBW \A|x) =∞.

Theorem 3 not only tells us the most likely routes from Ωx to Ω\Ωx, by implication it also tells

us where we are likely to leave Ωx from and where we are likely to end up. First, since all states in

Ωx can be reached from x with no resistance, the path must leave Ωx through a point z ∈ Ωx from

which the path to B is of least resistance among the direct routes from Ωx to B with forbidden set

W ∪ Ωx - since leaving Ωx through any other point would incur higher resistance. We call such z

an express exit.

Next we consider where we end up. In case B = W = Ω\Ωx, which recurrent communicating

class in Ω\Ωx are we likely to move to? Let ΩLP
−x be the collection of Ωy in Ω\Ωx for which there

is a quasi-direct route from x to y of least peak resistance and let ΩGP
−x be the remainder of Ω\Ωx.

Let Pε(Ω
j
−x|x) denote the probability that starting at x the �rst arrival at Ω\Ωx is in Ωj

−x for

j = LP,GP . Then we have the following immediate corollary of Theorem 3.

Corollary 3. limε→0
Pε(ΩLP−x |x)

Pε(ΩGP−x |x)
=∞.

To better understand what these results say about the actual dynamics of the system, recall that

Ellison (2000) de�nes the basin of Ωx as the set of states in Z for which there is a zero resistance

path to Ωx and no zero-resistance paths to Ω\Ωx. Said otherwise, it is the set of states for which

there is probability one in P0 of reaching Ωx. He also de�nes the radius as the least resistance of

paths from Ωx out of the basin. Focus on the case B = W = Ω\Ωx. Theorem 2, together with the

fact that there are zero resistance paths from x to any other point z ∈ Ωx and from outside the

basin to Ω\Ωx, shows that the least peak resistance ρ(QxBW ) is the same as the radius. Theorem 3

shows that what matters for leaving the basin are the least peak resistance paths in the sense that

paths from Ωx to Ω\Ωx which have peak resistance higher than the radius are very unlikely. That

includes both paths with a higher exit resistance than the radius and paths which have loops with

higher resistance than the radius. Corollary 3 shows that the recurrent communicating classes Ωy

that will be reached from Ωx are very likely to be those for which the peak resistance is the same

as the radius - which is to say that when we leave the basin on a direct route with resistance equal

to the radius there is then a zero resistance path to Ωy.
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5.3. Expected Length and Visits of Quasi-Direct Routes

We know from Theorem 1 that transition paths in the direct route case are short. For paths

that are allowed to remain in Ωx we have the opposite result: these paths are quite long. At

this point it is convenient to focus on the case where B is reached with probability one, that is

Pε(QxBW |x) = 1. We assure this by assuming that B = W .13 Our goal is to show that QxBW has

paths of expected length ε−r(AxBW ); that the fraction of time spent in Ωx goes to one; and that the

absolute time spent outside of Ωx goes to in�nity. We will also show which kind of loops are likely

to recur many times. The proofs of the results of this section may be found in Appendix 2.

The �rst result concerns the amount of time it takes to leave Ωx and how much of that time is

spent in Ωx:

Theorem 4. Suppose that B = W . For a = (a1, a2, . . . , an(a), a
+) ∈ QxBW we let a− = (a1, a2, . . . , an(a))

denote its loops and de�ne t−(a) to be the amount of time along a− spent outside of Ωx.
14 Then

Eε[t(a)|x,QxBW ] ∼ Eε[t(a−)|x,QxBW ] ∼ ε−r(AxBW )

and

lim
ε→0

Eε

[
t−(a)

t(a−)

∣∣∣∣x,QxBW] = 0.

This says that quasi-direct paths including or excluding the exit path are long and spend most

of their time in Ω(x).

The second result characterizes more exactly what happens while the system spends time outside

of Ωx during a quasi-direct route:

Theorem 5. Suppose that B = W . For A ⊆ AxxW let M(a,A) be the number of loops of a that
lie in A. For A ⊆ AxxW

Eε[M(a,A)|x,QxBW ] ∼ εr(A)−r(AxBW )

if in addition r(A) < r(AxBW ) and k ≥ 0

lim
ε→0

Pε[M(a,A) > k|x,QxBW ] = 1.

Also let AxxW [t] be the set of loops which spend at least t consecutive periods outside of Ωx. If
there is a path a0 ∈ AxxW that contains a zero resistance loop not touching Ωx with 0 < r(a0) <
r(AxBW ) then for any k > 0

lim
ε→0

Pε(M(a,AxxW [kt(a+)])|x,QxBW ) > k) = 1

The �rst two statements say that if there is some a0 ∈ AxxW with 0 < r(a0) < r(AxBW ) then

this loop will occur many times even though the fraction of the time spent outside Ωx in such loops

13Recall that the paths in QxBW by de�nition have positive probability of reaching B without touching W along
the way; when B = W there is no other way of reaching B so this probability becomes one.

14This �rst result is an extension of Ellison (2000)'s result that the waiting time for leaving Ωx is of order ε
−r where

r is the radius. Ellison mentions both an upper and lower bound in the text, but we have been unable to locate his
proof of the lower bound. The extension here is that W can be a general quasi-comprehensive set, for example, it
might include states in the basin of Ωx.
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must be small. Or we can say it this way: as ε → 0 loops in AxxW that have resistance strictly

less than the radius occur an arbitrarily large number of times before we leave the basin of x and

those which have a resistance strictly greater than the radius have a vanishing small probability of

occurring before we exit the basin. The third result says that it will often be the case that a will

spend more than k times as long outside of Ω(x) as it takes to get to the �nal destination following

the exit path.

On a more technical note, the �rst result describes the expected number of occurrences while

the second describes the realized number of occurrences of loops in A. The di�erence between the

two is this: the amount of time before leaving the basin is random. It could be that with very high

probability the number of occurrences is small (less than k say) and in those rare cases where the

length of time before leaving the basin is very large the number of occurrences is very large. In

this case the expected number of occurrences may grow as ε gets smaller while the probability of

seeing more than k occurrences remain unchanged or even falls. The second part of the Theorem

5 shows that this cannot happen.

6. The Big Picture

Reconsider the dynamics of Pε. Starting at any point x, by Theorem 1 we move quickly to one

of the recurrent communicating sets Ωy. Once there, by Theorem 4 it is a long time before we

reach a di�erent Ωz and most of that time is spent in Ωy. One question we now address is what

the dynamics look like during the long period when we are in Ωy. When we do �nally leave Ωy, by

Theorem 2 we move quickly to the next Ωz and it is most likely the recurrent communicating set

that has least exit resistance from Ωy. The second question we will address is, over the longer run

how much time do we spend in the di�erent recurrent communicating sets in Ω? To this end, we

assume in this section that Pε is ergodic for ε > 0 and denote by µε the unique ergodic distribution

of the process.

The big picture which we will break down over the next subsections can be visualized by thinking

of astronomy. At the bottom level are planets, which correspond to recurrent communicating

classes. Movements within recurrent communicating classes can be though of as moving around on

the planetary surface - that is relatively quick. Recurrent communicating classes are surrounded

by states in their �inner basin� that are tightly bound to them - like moons around a planet. There

are also a few states that are either far from recurrent communicating classes, or bound to several

of them. For these only we cannot give precise bounds on the ergodic probabilities - we may think

of them as comets. Recurrent communicating classes in turn are grouped into �circuits� - think of

those as solar systems: movement within a solar system being much more rapid than movement

between solar systems. These circuits - solar systems - are grouped into higher order circuits -

galaxies, and the �galaxies� in turn to even higher level circuits and so forth. We give tight bounds

for the relative ergodic probabilities for elements within a circuit: planets within a solar system,

solar systems within a galaxy. In the end all these circuits are contained in a single universe, and

this will give us the relative ergodic probabilities of all recurrent communicating classes.
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We should emphasize that while the method of circuits can be turned loose on arbitrary models

to determine the structure and relative probability of recurrent communicating classes, it can also

be useful in building models. Some structures are easier to analyze than others. For example, in

the hegemony model of Levine and Modica (2013) all recurrent communicating classes are in the

same circuit, so it is trivial to analyze their relative resistances: it is given by the di�erences of

least resistances to leaving - or more simply, in that context: hegemonies can be ranked by their

state power in their worst state, and hegemonies with higher state power are relatively much more

likely in the ergodic distribution than those with lesser state power. At the next level, if we can

establish assumptions that bind recurrent communicating classes into groups where all the groups

lie in a single circuit then within each group relative resistances are determined by exit resistances;

and the relative resistances between groups is determined by the exit resistances from group to

group. More broadly our intuition may tell us what the structure of circuits �ought� to look like so

that it would be natural to focus on assumptions that lead to that type of structure.

6.1. Inside Recurrent Communicating Classes: On the Surface of the Planet

When ε = 0 we cannot move between recurrent communicating classes but we have well de�ned

and ergodic dynamics within each class. Moreover, these dynamics are fast in the sense that they

are independent of ε. Hence if we are interested in the approximate probability of events within

a class we should consider paths of bounded length. For such events, the probabilities in P0 are

much the same as for Pε for ε small. Speci�cally,

Theorem 6. Let A1 and A2 be any collections of paths of bounded length starting at x ∈ Ωx and
for which P0(A2|x) > 0. Then

lim
ε→0

Pε(A1|x)

Pε(A2|x)
=
P0(A1|x)

P0(A2|x)
.

Proof. Since the probabilities are de�ned by �nite sums of �nite products of the transition proba-
bilities Pε(z|y) and the length of the sums and products are bounded independent of ε the result
follows immediately from the assumption that limε→0 Pε(z|y) = P0(z|y).

In particular since paths that lie entirely within Ωx have probability one in P0 given x, the

probability of sets of paths of �nite length within Ωx is roughly the same in Pε as in P0 when ε is

small.

The other important characteristic of Ωx is the amount of time spent at di�erent states. Notice

that if we restrict the state space to Ωx then P0 is an ergodic Markov process on that space, so

has a unique and strictly positive ergodic distribution µ0(y), where
∑

y∈Ωx
µ0(y) = 1. Notice in

particular that if y ∈ Ωx the ratio µ0(x)/µ0(y) is well-de�ned and �nite. We can relate this to the

ratio of stationary probabilities µε(x)/µε(y) for the process when ε > 0. In Appendix 3 we show:

Theorem 7. If y ∈ Ωx then

lim
ε→0

µε(x)

µε(y)
=
µ0(x)

µ0(y)
.
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6.2. Basins and Ranges: Moons and Comets

Recall that the basin of Ωx consists of the states for which there is probability one in P0 of

reaching Ωx. For the purpose of relating states to recurrent communicating classes it is useful to

de�ne three variations on the basin. First observe that from any point outside the basin there is

positive P0-probability of reaching Ω\Ωx, that is from outside the basin there is a zero-resistance

path to Ω\Ωx. Therefore the radius - least resistance of leaving the basin - is also the least resistance

to get to Ω\Ωx.

De�nition 5. The outer range of Ωx is the set of states for which there is a zero resistance path
to Ωx. The inner range of Ωx is the set of states y in the outer range which can also be reached
from x with resistance not larger than the radius of Ωx.

15 If we further require that the resistance
of being reached is strictly less than the radius we have the inner basin.

The outer range is the largest set of states a�liated with Ωx in the sense that any states outside

the outer range will never get to Ωx when ε = 0. The outer range contains the basin, but unlike the

basin the outer range does not require reaching Ωx with probability one when ε = 0, and a point

can be in the outer range of di�erent recurrent communicating classes.16 By contrast the basins of

di�erent recurrent communicating classes must be disjoint.

The inner basin is a subset of the inner range by de�nition. It is also a subset of the basin, since

if a point in the inner basin were not in the basin we could go from x to Ω \ Ωx with resistance

strictly less than the radius which is impossible by de�nition. The states in the inner basin are the

states most tightly a�liated with Ωx: this is shown by Theorem 4 which says that these states will

be hit many times before moving on to the next recurrent communicating class.

There is no �rm relationship between the basin and the inner range. The basin may contain

states further from Ωx than the radius, so states not in the inner range. The inner range contains

states at a distance equal to the radius, and some of these states must have zero resistance paths to

other recurrent communicating classes so that they they cannot be part of the basin. Never-the-less

states in the inner range are still �close� to Ωx: they are part of least peak resistance paths to other

recurrent communicating classes and Theorem 4 says the expected number of times they will be hit

before moving on is positive. By contrast the states that are in the basin but not the inner range

are �far� from Ωx and this can be seen precisely in Theorem 3 which shows that these states are

unlikely to be reached from Ωx prior to reaching another recurrent communicating class.

States in the inner basin are like �moons� tightly bound to the recurrent communicating class,

while states in the outer range but not the inner basin are more like �comets� that are not tightly

bound to any recurrent communicating class.

Let rD(x, y) be the least resistance of any direct path from x ∈ Ωx to y that does not pass

through any recurrent communicating class other than Ωx, that is, that is we de�ne rD(x, y) ≡

15If this is true then there is also a direct route with forbidden set W = (Ω\Ωx) ∪ {x} ∪ {y} with this property.
Basically within the basin it does not matter whether least resistance is measured along direct routes or all routes
since it is not possible to pass through Ω\Ωx while remaining in the basin.

16In the introductory example the state {2} is in the outer range of both Ω0 and Ω5.
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r(AxyW ) with W = (Ω\Ωx) ∪ {x} ∪ {y}. Take W = Ω\Ωx and de�ne the radius17 of Ωxto be

r0(Ωx) = r(QxWW ). It is shown in Appendix 3 that:

Theorem 8. If x ∈ Ωx and rD(y, x) = 0 then

µε(y)

µε(x)
∼ εr

where min{rD(x, y), r0(Ωx)} ≤ r ≤ rD(x, y).

For the �comets� - states that are not in the inner range of any recurrent communicating class,

that is, states that are in the outer range of one or more recurrent communicating class, but

are �hard� to reach - Theorem 8 gives bounds for the ergodic probabilities - they cannot be too

likely. For the �moons� - states in the inner range - the bound is tight, and says that their relative

probability of occurring is inversely proportional to the least resistance of getting to them from Ωx.

Corollary 4. If y is in the inner range of x ∈ Ωx, then

µε(y)

µε(x)
∼ εrD(x,y).

6.3. Recurrent Communicating Classes: Solar Systems, Galaxies and beyond

Consider again the overview of the dynamics of Pε: starting at any point x we move quickly

to one of the recurrent communicating sets Ωy, and once there it is a long time before we reach a

di�erent Ωz and most of that time is spent in Ωy. When we do �nally leave Ωy we move quickly - and

directly, in our sense - to the next Ωz and it is most likely the recurrent communicating set that has

least exit resistance from Ωy. Proceeding in this way we get a sequence of recurrent communicating

sets Ωi connected by least exit resistances.18 Since the set Ω of recurrent communicating classes in

P0 is �nite, eventually this sequence must have a cycle.

More general than the notion of a cycle, we introduce the notion of a circuit. The de�ning

property of a circuit is that between any two of its states there is a path within the circuit with least

resistance transitions. We start by de�ning circuits in Ω. For Ωx,Ωy ∈ Ω de�ne transition resistance

r0(Ωx,Ωy) = min{rD(x, y) | y ∈ Ωy}, that is the least resistance of any direct path from x to Ωy

not touching Ω \ Ωx; least resistance out of Ωx is then de�ned as r0(Ωx) = minΩy∈Ω\Ωx r
0(Ωx,Ωy)

- Ellison (2000)'s radius of Ωx.

De�nition 6 (Circuits). A set Ω1
x ⊆ Ω is a circuit if for any pair Ω1,Ωy ∈ Ω1

x there is a path
(Ω1,Ω2, . . . ,Ωn) in Ω1

x with Ωn = Ωy and r
0(Ωτ−1,Ωτ ) = r0(Ωτ−1) for τ = 2, 3, . . . n.

Our basic observation is that once we reach a circuit, we remain within the circuit for a long

time before going to another circuit. We �rst compare states within a circuit. Since the probability

of leaving Ωx is of order ε
r0(Ωx), the expected length of any visit to Ωx is 1/εr

0(Ωx). We might then

17As noted above this is di�erent from Ellison (2000)'s de�nition but equivalent.
18We could equally well say radius.
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expect that the amount of time we spend at Ωx is roughly εr
0(Ωy)−r0(Ωx) as long as the amount of

time we spend at Ωy. In Web Appendix 4 we show that this is indeed true.

Theorem 9. If the recurrent communicating classes Ωx and Ωy are in the same circuit then

µε(x)

µε(y)
∼ εr0(Ωy)−r0(Ωx).

We next ask how long do we actually spend in a circuit over Ω? We stay in Ωx roughly ε
−r0(Ωx)

periods. On the other hand the probability of going to a �xed Ωy 6= Ωx out of the circuit is of order

εr
0(Ωx,Ωy). Hence the probability of going to Ωy during a visit to Ωx is of order (1/εr

0(Ωx))εr
0(Ωx,Ωy).

In order for this to occur with very high probability the number of visits to Ωx must be roughly

kx where kx(1/εr
0(Ωx))εr

0(Ωx,Ωy) = 1. That is kx = 1/εr
0(Ωx,Ωy)−r0(Ωx). Following Ellison (2000)

we de�ne the modi�ed resistance from Ωx to Ωy as R0(Ωx,Ωy) = r0(Ωx,Ωy) − r0(Ωx). Then the

number of visits is least for the element Ωz in the circuit which has minimum R0(Ωz,Ωy) over

Ωy 6∈ Ω1
x. This is the most likely (actually least modi�ed resistant) exit from the circuit. Also, it

will exit to a circuit which is easiest to reach. This in turn suggests that we can form circuits of

circuits using modi�ed resistances as the measure of resistance in going from one circuit to another.

The system moves between circuits of circuits in a longer time horizon. Moreover, as we have seen

the crossings between circuits are direct routes, hence we will de�ne resistance in terms of such

paths. We spell out these ideas next.

The procedure we will describe is essentially the same as that employed by Cui and Zhai (2010)

to compute the stochastically stable state.19 Here we employ the procedure to determine the relative

probabilities of recurrent communicating classes.

We build circuits recursively starting from Ω0 ≡ Ω. Assuming Ω has NΩ ≥ 2 elements, we

observe in Appendix 4 that there is at least one circuit that is non-trivial in the sense of having at

least two elements, and that every singleton element is trivially a circuit. Hence we can form a non-

trivial partition of Ω0 into circuits, and we denote by Ω1 the collection of elements of this partition

- so an element of Ω1 is a circuit on Ω = Ω0. Given two distinct elements Ω1
x,Ω

1
y ∈ Ω1, de�ne

transition resistance r1(Ω1
x,Ω

1
y) = min{R0(Ωx,Ωy) | Ωx ∈ Ω1

x,Ωy ∈ Ω1
y}, least outgoing resistance

r1(Ω1
x) = min{r1(Ω1

x,Ω
1
y) | Ω1

y ∈ Ω1\Ω1
x} and modi�ed resistance R1(Ω1

x,Ω
1
y) = r1(Ω1

x,Ω
1
y)−r1(Ω1

x).

A set in Ω1 is a circuit if - as before - between any two of its states there is a path where each

transition has least outgoing resistance (according to r1 of course). Continuing, as long as Ωk−1

has more than one element we partition it into circuits, call Ωk the resulting collection of elements

- and for Ωk
x,Ω

k
y ∈ Ωk de�ne rk(Ωk

x,Ω
k
y) = min{Rk−1(Ωk−1

x ,Ωk−1
y ) | Ωk−1

x ∈ Ωk
x,Ω

k−1
y ∈ Ωk

y},
rk(Ω1

x) = min{rk(Ωk
x,Ω

k
y) | Ωk

y ∈ Ωk\Ωk
x} and modi�ed resistanceRk(Ωk

x,Ω
k
y) = rk(Ωk

x,Ω
k
y)−rk(Ωk

x).

Note that since each partition is non-trivial, this construction has at most NΩ layers before the

19There are a number of known algorithms for computing the stochastically stable state related to that of Cui and
Zhai (2010). Hasker (2014) has a good review of the literature. Cui and Zhai (2010) in fact use the terminology of
cycle, but as that seems misleading, we prefer the term circuit since movement within a circuit will not necessarily
be a cycle.
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partition has a single element and the construction stops: k ≤ NΩ.

The crucial function at each layer k turns out to be the following modi�ed radius of x ∈ Ωx of

order k, de�ned by

R
k
(x) =

k∑
κ=0

rκ(Ωκ
x)

where Ω0
x = Ωx and for each κ > 0 the element Ωκ

x 3 Ωκ−1
x . It is a measure of the di�culty of

traveling far from x and has an intuition similar to that of Ellison (2000)'s modi�ed coradius. We

show in Appendix 4 that the following holds:

Theorem 10. Let k be such that Ωk
x = Ωk

y - that is x and y are in the same circuit in Ωk. Then

µε(x)

µε(y)
∼ εR

k−1
(y)−Rk−1

(x).

It is useful to de�ne the di�erence between the modi�ed radii R
k−1

(y)−Rk−1
(x) as the relative

ergodic resistance of x over y. The theorem says that the relative probabilities within a circuit are

proportional to ε to the power of the relative ergodic resistance. Note here the implication: if x

and y are in the same circuit in Ωk then of course they have to be in the same circuit in any Ωκ

for κ > k. Hence in this case R
κ−1

(y)−Rκ−1
(x) = R

k−1
(y)−Rk−1

(x).

Traditionally interest has focused on the states x that have ergodic probabilities that are

bounded away from zero - the stochastically stable states. We can see from Theorem 10 that

in any circuit these states must have non-positive relative ergodic resistance over any other state

and strictly negative over any state that is not also stochastically stable. Since this must be true

in any circuit, it must be true in the top level circuit that contains all recurrent communicating

classes - that is to say the Ωk where k is the highest level of the �ltration where the partition is a

singleton. We thus have the following

Corollary 5. The stochastically stable states are exactly those with the highest values of R
k−1

(x),
where k is the level at which the partition into circuits is a singleton.

6.4. An Example

To illustrate the application of Theorem 10, let us give a complete analysis of the case where

Ω has three elements.20 Note that there are 9 trees on 3 states, so the analysis by means of trees

is already di�cult. For simplicity let us make the generic assumption that no two resistances or

sums or di�erences of resistances are equal.

There are two cases: either there is a single circuit, or there is one circuit consisting of two

states, and a isolated point. The case of a single circuit is trivial - in this case in Theorem 10 k = 1

and since R
0
(x) = r0(Ωx) the relative ergodic resistances are given simply by the di�erences in

least outgoing resistances between the three states, and the stochastically stable state is the point

with least outgoing resistance.

20See also Hasker (2014).
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Take then, the case of Ω with one two-point circuit and an isolated point, and denote by Ωx,Ωy

the two states on the circuit and with Ωz the remaining point. Then k = 2 in the theorem. Assume

without loss of generality that r0(Ωx) > r0(Ωy) so that within the circuit Ωx is relatively more

likely. Notice that r0(Ωx,Ωy) < r0(Ωx,Ωz), r
0(Ωy,Ωx) < r0(Ωy,Ωz) since Ωx,Ωy are on the same

circuit - this also implies r0(Ωx) = r0(Ωx,Ωy), r
0(Ωy) = r0(Ωy,Ωx). Turning to the recursion, we

need to work out the least modi�ed resistances. Let Ω1
x = {Ωx,Ωy} be the circuit and Ω1

z = Ωz

the isolated point. Then r1(Ω1
z,Ω

1
x) = min{r0(Ωz,Ωx) − r0(Ωz), r

0(Ωz,Ωy) − r0(Ωz)} = 0 while

r1(Ω1
x,Ω

1
z) = min{r0(Ωx,Ωz) − r0(Ωx), r0(Ωy,Ωz) − r0(Ωy)}. Hence R

1
(z) = r0(Ωz), which is just

the radius of Ωz, while

R
1
(x) = r0(Ωx) + min{r0(Ωx,Ωz)− r0(Ωx), r0(Ωy,Ωz)− r0(Ωy)}

= min{r0(Ωx,Ωz), r
0(Ωx) + r0(Ωy,Ωz)− r0(Ωy)}

which is to say exactly what Ellison (2000) de�nes as the modi�ed co-radius of Ωz.
21 The relative

ergodic resistance of x over y is therefore r0(Ωz)−R
1
(x), while the relative ergodic resistance of y

can be recovered from the relative ergodic resistance of y over x which is just r0(Ωx)−r0(Ωy). With

respect to stochastic stability, we see that Ωz is stochastically stable if and only if its radius r0(Ωz)

is greater than its co-radius R
1
(x) which is Ellison (2000)'s su�cient condition, and otherwise Ωx

is not stochastically stable. In short, the entire ergodic picture comes down to computing three

numbers: the radius and co-radius of Ωz and the di�erence between the radii of Ωx and Ωy.

7. The Fall of Hegemonies

We now discuss how our results can be used to interpret historical facts concerning sequences

of long-run social events of small probability. This is the natural �eld of application of our theory,

which concerns transitions along paths whose steps are each quite unlikely to occur. We will focus

in particular on the fall of the Qing dynasty in twentieth century China. We use a variation of

the model of Levine and Modica (2013) and Levine and Modica (2012), identifying the fall of a

hegemonic society with its progressive loss of land to a di�erent society.22 We emphasize that this

application is limited in scope - the goal is to illustrate how results on transitions lead to interesting

predictions. The sensitivity of the predictions to assumptions and the validity of those predictions

across a broad range of data are of independent interest but beyond the scope of this paper and

discussed in Levine and Modica (2012).

There are a �nite number J of societies. In each period t each society j has one of a �nite

21In fact the modi�ed co-radius is de�ned as the larger of R
1
(x) and R

1
(y) = min{r0(Ωy,Ωz), r

0(Ωy,Ωx) +
r0(Ωx,Ωz)− r0(Ωx,Ωy)}. However, r0(Ωx,Ωz) > r0(Ωy,Ωx) + r0(Ωx,Ωz)− r0(Ωx,Ωz) and r

0(Ωx,Ωy) + r0(Ωy,Ωz)−
r0(Ωy,Ωx) > r0(Ωy,Ωz) imply R

1
(x) ≥ R1

(y).
22Levine and Modica (2013) and Levine and Modica (2012) use a model in which the con�ict is distinct from

learning. The model here simpli�es that model by having learning take place on a single unit of land at a time when
a society is �unstable.� This greatly simpli�es presentation of the model without any important consequences for the
results. The model here otherwise weakens the assumptions in those papers.
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number of internal states ξjt ∈ Ξj . These states evolve according to a �xed Markov process

Πj(ξjt|ξj,t−1) > 0 independent of ε so that all transitions are possible. External forces such as

disease, climate, other real shocks to productivity, or the interference of outsiders who are are

protected themselves by geographical barriers, or superior technology can lead to changes in the

internal state; the state may also represent changes in the internal structure of institutions. A good

example of the Πj process within a given society can be found in Acemoglu and Robinson (2001):

there external shocks in the form of recessions drive changes in institutions whereby the voting

franchise is extended or contracted. The ability of a society to resist and in�uence other societies

is indexed by �state power� γj(ξjt). Societies may or may not satisfy incentive constraints: we

represent this by a stability index bj ∈ {0, 1} with 1 indicating stability, where societies violating

incentive constraints are thought to be unstable. We assume that the strongest unstable society

with the most favorable value of ξj is stronger than the strongest stable society in its least favorable

value of ξj . That is maxj|bj=0,ξjt∈Ξj γj(ξjt) > maxj|bj=1 minξjt∈Ξjγj(ξjt). This re�ects the idea that

unstable societies face weaker incentive constraints.

Societies compete over a single resource called land. Each society j holds an integral number

of units of land Lj where there are L units of land in total. A state z is a list of land holding

and real shocks of the di�erent societies, z = (L1, ξ1, L2, ξ2, . . . , LJ , ξJ). Land changes ownership

between societies due to con�ict. We assume that at most one unit of land changes hands each

period. The probability that society j loses a unit of land is given by a con�ict resolution function

with resistance rj(z) <∞ to j losing one unit of land - that is the resistance of a transition from z

to a state where j has one less unit of land. If j looses land the probability the land goes to society

k has land gain resistance λjk(z) where λjj =∞ but if k 6= j then λjk <∞.

Conceptually in this model there are two distinct types of societies: active societies that have

positive land holdings and inactive societies that do not. Inactive societies represent templates for

societies that might exist but do not exist currently: an inactive society may become active because

when an active society loses land the land may be lost to an inactive society - that is the loss of

land may represent experimentation with new institutions.

We make several speci�c assumptions about the con�ict resolution and land gain resistance. We

assume that r and λ depend only on the land holdings, state power and stability of the di�erent

societies. Since they are just templates for societies, we assume that the state power of inactive

societies does not matter. We assume that con�ict resolution resistance is monotone, so that the

probability of j losing land decreases with its own state power and land, and increases with that

of other societies. In particular, we assume that unstable societies always have zero resistance to

losing a unit of land - if incentive constraints are not satis�ed, individuals experiment with di�erent

actions, and societies experiment with di�erent institutions (albeit just on a single unit of land at

a time); and for stable societies we assume the resistance is strictly monotone when non-zero, and

that the weakest society with positive land holding has zero resistance to losing a unit of land.

Finally we assume for given land holding that resistance is greater when facing more than one

opponent with positive land holding than when all enemy land is in the hands of the strongest

19



land holding opponent - also that this is strict if resistance is positive. With respect to land gain

resistance we assume that if k 6= j and Lk > 0 then λjk(z) = 0, that is, active societies all have

zero resistance to gaining land.

7.1. The Rise, Fall and Warring States

We apply the same outline of analysis to this model as we did to the simple example of Section

2: we look �rst for the recurrent communicating classes, then for the relationship between them,

then the basins, then the relationship between the basins and recurrent communicating classes and

�nally examine the transitions.

1. Recurrent communicating classes for ε = 0.

A hegemony is a single society that controls all the land. The assumption that the weakest

society with positive land holding has zero resistance to losing a unit of land plays a key role in

determining the recurrent communicating classes: it implies that there is a zero resistance path

from every non-hegemonic state to a hegemonic state: monotonicity implies that losing land cannot

increase resistance, so the weakest society keeps losing land until hegemony is established. Second,

there is a zero resistance path from any unstable hegemony to a stable hegemony: by assumption

the unstable hegemony has zero resistance to losing land and by symmetry the �rst unit of land

lost has zero resistance to being �taken� by a stable society - which once it becomes active continues

to have zero resistance to taking over the next unit of land and so forth.

There are three cases, depending on what the stable hegemonies are like. It may be that the

stable hegemony has so little state power that it also has zero resistance to losing land. In this

case there is a zero resistance path from a hegemony to any state in which there are no more than

two active societies (and in particular from any hegemony to any other) and from there to other

states without an hegemonic society so that there is only one recurrent communicating class and

it is �large� in the sense that it includes within it unstable as well as stable societies, and societies

with all levels of state power. Second, it may be that there is a single stable hegemony that has the

greatest state power and that only this hegemony is strong enough to resist losing land. In this case

that single hegemony Ωx is the only recurrent communicating class. If y ∈ Ωx then j(x) can denote

the single stable society j(x) that controls all the land, while the di�erent states y ∈ Ωx correspond

to di�erent shocks ξj(x). Finally, it may be that two or more stable societies are strong enough

to have resistance when hegemonic. These di�erent societies may have the same or di�erent state

power. Regardless, these societies each constitute a recurrent communicating class. Our interest

here is in the third case - about how hegemonies fall - that is, how we move from a hegemony Ωx

to B = Ω\Ωx,W = B.

2. Relation between the classes for ε > 0.

Again we ask: starting in one recurrent communicating class, which comes next, how long will

it take and relatively how much time is spent at each recurrent communicating class?

The �rst step is the standard one of understanding the radius and least resistance paths out of

the basin which by Corollary 3 we know are the most likely ways of leaving the basin. Because of
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monotonicity a single invader with the greatest state power in the most favorable state always has

the least resistance to gaining a unit of land from the hegemon. Hence a path in which such an

invader repeatedly takes land from the hegemon is a least resistance direct route out of the basin.

There is a threshold level of land such that once the hegemon loses this amount of land it loses

resistance - because this �optimal� invader is necessarily at least as strong as the hegemon and

because the weaker of the two societies always has zero resistance to losing land, this threshold is

no more than 50% of the land.

Next we observe that we have assumed that unstable societies can generate more state power

than any stable society. This means that the �optimal� invader must be unstable. We refer to

the unstable society that generates the greatest state power as �zealots.� These are the �optimal�

invaders.

Notice that once the basin has been exited, zealots can continue to gain land with zero resistance

until there is a hegemony of zealots. At this point, since zealots are unstable and have zero resistance

to losing land themselves their hegemony is transient, and any stable society can enter and take

all the land away from the zealots until they themselves form a hegemony. Hence: from any

Ωx ∈ Ω there is a least resistance path to any other Ωy ∈ Ω. That means that all the recurrent

communicating classes are in the same circuit, and so by Theorem 9 their relative probabilities

simply depend on the di�erences in their radii. Since the radius is determined entirely by state

power and is strictly increasing in state power, this means that hegemonies with greater state

power are far more likely in the long run than societies with less state power. Notice how the (very

reasonable) assumption that greater power is generated by ignoring incentive constraints than by

satisfying them leads to this very simple long-run dynamic.

By the earlier work of Ellison (2000) and Theorem 4 we know that the waiting time for a

hegemony to fail is determined by the radius and hence by the state power. Hegemonies with

greater state power are more durable.

3. Basins.

The states in the basin of a hegemony Ωx are simply those states in which the society has

positive resistance to losing land for all internal states ξj(x): since this means that j(x) is not the

weakest society, it follows that there is zero resistance to some other society losing land, and since

j(x) has zero resistance to gaining that land and continues to have positive resistance to losing

land when it increases its land holding, this means a probability one path to the hegemony when

ε = 0. The inner basin is just that subset of the basin which can be hit with less resistance than

the radius: this is typically a much smaller set than the basin.23

The outer range consists of states that are in the basin but have resistance strictly greater than

23A point is in the basin but not the inner basin if the hegemony is reached with probability 1 when ε = 0 but the
resistance to reaching the point is greater than the radius. So, for example, if a su�ciently weak opponent occupies a
large fraction of the land then it will be overcome by the hegemony when ε = 0 with probability 1, yet starting at the
hegemony the resistance to such a weak opponent grabbing so much land can be much greater than the resistance to
determined zealots taking enough land to put an end to the hegemony.
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the radius, plus a large collection of states which have zero resistance both to returning to the

hegemony and some other recurrent communicating class. This is true of any state in which an

unstable society is the strongest (in its strongest internal state) - such as those states reached after

invasion by zealots.24 The inner range just adds those states in the outer range that have resistance

equal to the radius.

4. Relation between basins and classes.

By Theorem 4, during the time before reaching a new class most of the time will be spent in the

current recurrent communicating class, but there will be a large number of periods during which

the system will move to states in the inner basin and back. From Theorem 8 the relative amount of

time spent at these states compared to the time spent in the recurrent communicating class is and

exponential function of the di�erence between the resistance of reaching the point and the radius:

further states are less likely.

5. Transitions

How we get from one recurrent communicating class to another is covered in Theorem 3. This

says that when ε is small it is nearly certain that this transition will take place along a least peak

resistance path, and we want to describe such paths in the model at hand: such a path may leave

the recurrent communicating class and return any number of times, but during each departure from

the recurrent communicating class the resistance encountered can be no more than the radius.

Notice that from an empirical point of view we probably do not know what the inner basin looks

like - but we may have a pretty good idea of a bound on the amount of land that the hegemon

needs to be in the inner basin. For example we may think that if the hegemon loses 30% or less of

its land it remains �safe� in the sense that it still has resistance. This shows some of the strength of

using arbitrary quasi-comprehensive sets W . We can simply take the forbidden set and the target

set B = W to be the set of states in which the hegemon controls at least 70% of the land - all the

theorems about least peak resistance apply equally well to this W , except that instead of radius,

we simply say �resistance to losing 30% of land� which has more empirical content.

Prior to the fall of the hegemony, by Theorem 4 the theory predicts that there should be a

small fraction but large number of periods where there are failed rebellions: lands that are lost to

other societies but quickly regained. These failed rebellions may or may not involve zealots, and

need not take place when ξj is at its nadir. However, prior to the actual exit, ξj must be such that

state power is at a nadir, and this means that resistance to rebellions is lower, so there should be

more frequent and larger rebellions prior to the �nal fall of the society.

The exit path must have least resistance to leaving the basin. We know one such path in which

the zealots simply grab one unit of land after another. This implies that the hegemon can lose

24As we remarked above: because the unstable society is strongest there is zero resistance to the unstable society
taking over. However, once the unstable society has taken over it has zero resistance to losing all its land to any
hegemony. In other words from such a state there is a zero resistance path to every recurrent communicating class.
Consequently these states are in the outer range, yet they are certainly not in the basin.

22



land only to the zealots - since any other loss would incur greater resistance - and that it can never

regain land, since then the zealots would have to regain it. This is exactly like in the discussion of

transitions in the example of Section 2.

Once the inner basin is breached we enter the outer range. We call this the fall of the hegemony.

Once the hegemony loses resistance there will be several societies competing each with an appre-

ciable chance of success. We refer to this turbulent period before the basin of another hegemony is

reached as the period of warring states. During this period there will be many societies which may

rise and fall, and swap land back and forth - it is a chaotic and turbulent phase. The exit path to

another recurrent communicating class will then be concluded with a rise of a new hegemony. The

rise of the new hegemony is in some respects opposite of the fall. Once a stable society has enough

land that it has positive resistance to any opponents (implied if they have positive resistance to an

opponent consisting entirely of zealots), least resistance implies it can only gain land and not lose

it.

The entire period of transition we know (Theorem 4) to be short relative to the length of the

hegemony, and of course that must be true individually for each of the three phases. We would

like to say something about the relative length of the three phases. The fall and the rise are both

monotone: during the fall the hegemony only loses land; during the rise the new hegemony only

gains land. Hence we expect these phases to be relatively fast. By contrast during the warring

states land may swap back and forth many times before a victor is established. This leads us to

suspect that the warring states period should last considerably longer than the fall and the rise.

However, if we simply �x the number of units of land, no such result is possible: the warring states

period may involve only a few units of land, while the fall and the rise could involve many units

of land. In this case - since just a few units of land are involved - the back and forth during the

warring states period does not much matter, since there is a good chance one society quickly gains

the small number of units of land needed to establish a new hegemony.

Warring States with Many Units of Land

It is natural to think in terms of relatively small units of land - for example the Alsace-Lorraine

region, a relatively small area - swapped back and forth between France and Germany four times

in less than a century. To capture �small units� of land, we model the idea that the number of

units of land L is large. In this case we might expect that the length of the rise and fall - being

monotone - will last an amount of time roughly proportional to L, while the warring states which

is more like a random walk would last an amount of time more nearly proportional to L2.

To make this precise, de�ne the share of land held by society j as θj = Lj/L and suppose that

the con�ict resolution and land gain resistance functions are continuous functions of these shares.

We also suppose that there is a threshold θ > 1/2 such that if no society has this fraction of land

then the land gain resistance of all active societies must be zero. Notice that this implies that any

path from one hegemony to another must enter the warring states phase, since at some point the

original hegemon falls below θL units of land for the �rst time and at this point the warring state
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phase is entered, since certainly no other society has that much land.25

As we increase L the number of states, which consists of all ways of dividing L units of land

among a �xed number J of societies, grows very rapidly. Hence bounds on the expected length

of direct routes that depend on the number of states are not going to be particularly useful. In

Appendix 1 speci�c bounds for least resistance paths are given that do not depend on the number

of states and a stronger version of this is given in Web Appendix 1. These bounds show that the

least resistance paths corresponding to the rise and fall have an expected length proportional to L.

We also want to argue that the warring state phase last much longer than the fall or the rise. To

do this we need an additional assumption: we need to know not just resistance during the warring

states phase, but something about the actual transition probabilities. We assume that during the

warring states phase when no society has more than θL units of land each active society has the

same probability β < 1/J of losing or gaining a unit of land. Notice that at some point a new

would-be hegemon must have L/2 units of land. Hence take an initial condition in which the society

with the most land is j and Ljt = L/2 units of land. Then Ljτ is a random walk with β chance of

increasing by one or decreasing by one at least until either Ljτ ≥ θL or Ljτ ≤ (1− θ)L .26 In Web

Appendix 2 we establish that the expected passage time is of order L2, which can be compared to

the expected length of the rise and fall in Web Appendix 2 which are of order L. We put these

results together in Web Appendix 3 to establish

Proposition 2. For any K there exists an L such that for all L ≥ L there exists an ε such that
for all ε ≤ ε the expected length of the warring states phase exceeds that of either the fall or rise by
K periods.

Note the order of limits here: for larger L we will generally have to choose smaller ε.

7.2. The Fall of the Last Qing Dynasty in China

An interesting exercise is to compare the theoretical predictions of the transition to the fall

of an actual hegemony. As a case study for which there is quite a bit of historical information,

we take the fall of the �nal Qing dynasty in China and the subsequent rise of the communist

hegemony.27 The basic fact is that Chinese institutions that lasted from roughly the introduction

of the Imperial Examination System in 605 CE until 1911 CE were swept away in less than a year.

It is useful to begin the story about 1838, before the First Opium War. At that time the Qing

dynasty held a hegemony over China proper: the area bordered by the di�cult terrain of Indochina

in the Southeast, the Himalayan mountains in the South, the inhospitable deserts in the West, the

Paci�c Ocean in the East and the wasteland of Mongolia in the North. It also held a number of

25Since we are assuming L is large we are ignoring the rounding o� needed due to the integer constraint.
26Even if Ljτ ≤ (1−θ)L no other society may have enough land to become hegemon, but certainly no other society

can have enough land to become hegemon until this condition is satis�ed, so we can use this condition to derive a
lower bound on the expected length of the warring states period.

27There are of course many accounts of this period, and while they sometimes disagree on exactly who did what
to whom when, all agree on the basic facts we describe below. One readable account by a journalist is that of Fenby
(2008).
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outlying areas not part of China proper - the Korean Peninsula, Indochina and Taiwan. As these

are not so easily defended, are not Chinese, and have only been part of the Chinese hegemony at

certain times - and moreover, the current government claims only Taiwan among these territories

- we do not count them as part of the hegemony.

Several independent sources of instability concurred to the fall of the hegemony. In the early

1800s China fell into a severe economic depression from which it did not recover prior to the fall

of the hegemony. Outsiders, most notably the English, French, and Japanese actively intervened

in China, sometimes �ghting for and other times against the Qing, but in any case certainly piling

on pressure. Opium consumption, induced by the English to correct trade imbalances, increased

as well.

From 1839 to 1910 there were a series of unsuccessful attempts to overthrow the Qing dynasty

including local rebellions and acts of de�ance by committed revolutionaries. During this time the

outlying territories were lost: Korea became independent, Indochina was lost to the French, and

Taiwan to the Japanese further weakening the hegemon. Roughly speaking the state ξj became

increasingly worse. However, each internal rebellion was successfully repressed, each war brought

to an end, and in each case the Qing hegemony over China proper - tax collecting authority, control

of institutions local and global - remained intact. There were institutional changes that took place

during this period, some forced by the outsiders, and an attempt to placate the revolutionaries,

such as the abolition of the imperial examination system in 1905. These can be viewed as shocks

ξj that further weakened the state. Although it is hard to measure the relative frequency of failed

rebellions before and after the economic weakness of the 19th Century, in the earlier periods there

seem not to have been such dramatic episodes as the Boxer rebellion and the less known Duggan

revolt (which lasted for �fteen years). As Theorem 4 predicts, before the actual fall the state ξj is

very bad, and there are many and probably increasing failed attempts at rebellion.

The actual fall of the Qing occurred in 1911 and as Theorem 1 suggests, it was very quick. There

were again a series of revolts - now however they succeeded. Also as the theory suggests, the length

of the successful revolt - less than a year - is considerably shorter than the longest failed rebellions

- the Boxer and Duggan rebellion lasting many years. The �nal successful revolt is coordinated by

Sun Yat Sen. The groups carrying out the various revolts can reasonably be described as zealots:

they share in common a dedication to overthrowing the Qing, they are willing to su�er severe risk

and live under unpleasant circumstances in order to achieve that goal. Such behavior is power

maximizing - but is not stable in the sense that no society has ever lasted very long based on the

fanatical devotion of its members - nor was it the case in China. Hence the theoretical description of

the fall of the hegemony is relatively accurate: zealots quickly capture the land, and do so without

a serious setback. In some cases land is seized by other groups, but they quickly join Sun Yat Sen

as the theory suggests. By the end of 1911 the Qing Emperor abdicated and Sun Yat Sen became

the provisional President of China, which however no longer was hegemonic in any reasonable sense

of the word.

Next is the period of warring states, both in theory and in fact. The theory says that there can
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be many competing societies, land may be lost and gained, zealots may or may not play a role.

Again, this is an accurate description of the situation in China between 1911 and 1946. Sun Yat

Sen was quickly deposed by a less fanatical and more materialistic warlord Yuan Shikai, but until

about 1927, and even after, there are many warlords in various parts of China who rise and fall,

many revolutions, some successful and other unsuccessful. There is also the Sino-Tibetan war and

the Soviet invasion of Xinjiang during this period. Basically the theory predicts chaos (in the non-

technical sense) and that is what we see. Beginning in about 1927 things settle down slightly with

two relatively more powerful groups, the Nationalists and the Communists, �ghting a civil war - but

there remain many warlords who continue to rise and fall, at times forming alliances or professing

allegiance to the two more signi�cant groups. These two groups, unlike the earlier revolutionaries

appear to have coherent and potentially stable institutions. Then in 1936 the Japanese seize control

of most of the country, an occupation that lasts until 1945. Notice that as the theory suggests the

length of this warring states period - 35 years - is much longer than either the fall (less than a year)

and the rise (about three years).

The �nal stage of a least resistance transition is the rise of the new hegemon. Again all transi-

tions must have zero resistance, but now we are in the basin of the hegemony so the least resistance

path consists of the hegemony gaining territory - without losing any - until hegemony is again

established. Notice that since in this model once the basin is left there are zero resistance transi-

tions to any particular hegemony breaching the threshold, the model makes no prediction about

which hegemony eventually emerges - in particular there is a non-negligible probability that even a

very weak hegemony emerges. In China, the threshold appears to be reached about 1946 when the

Communists controlled about a quarter of the country and about a third of the population. They

quickly overran the remaining areas held by the Nationalists, who retreated to Taiwan in 1949.

8. Conclusion

This paper is about events and combinations of events that are unlikely and that can be modeled

as a �nite Markov process, in particular how such a process moves from one relatively stable long-

run state to another. Examples are transitions between di�erent equilibria in a game or di�erent

political regimes. We show that these systems exhibit long periods of stability punctuated by brief

episodes of change, and we give a detailed description of the probabilities and frequencies of these

di�erent outcomes. Within the literature on �evolution of conventions" we complement the results

of Kandori, Mailath and Rob (1993), Young (1993), Ellison (2000), Cui and Zhai (2010) and

Hasker (2014) on long run dynamics in games. When applied to the context of social evolution, our

theory has implications both for the societies we are likely to see and for the design of institutions:

institutions that will persist for long periods of time must be robust against multiple failures, and

it is these multiple failures that lead a society to fall.

It may be useful to look at smaller systems about which we have a great deal of information -

also subject to small unlikely shocks, and subject to the same type of Markov analysis - to see what

is involved. For example commercial airlines, which despite the vast number of �ights and miles
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�own crash relatively infrequently. As our theory predicts, when they do crash, it is typically due

to multiple near simultaneous failures. To take a speci�c example, on November 24, 2001, en route

from Berlin on approach to Zurich Crossair Flight 3597 crashed near Bassersdorf, Switzerland killing

24 of the 33 people on board. According to the �ight investigation seven independent unfortunate

events occurred on that occasion.28 These multiple failures seem typical of commercial aviation

crashes. Each individual failure is unlikely, but none terribly so. What is highly unlikely is that all

occur in combination. In general airplanes are designed with a high degree of redundancy to provide

insulation against failure of one or even several components: multiple pilots, multiple navigation

systems, multiple engines, multiple independent hydraulic systems and so forth. So it is with human

societies. For example penal codes and the legal systems have a high degree of redundancy (appeals

procedures) to prevent the punishment of the innocent. Societies that survive for long periods of

time must be well cushioned against even multiple failures. For example, the fall of the Roman

Empire has been attributed to many factors: religious ferment, the plague, corruption, the forced

migration of hostile outsiders, economic recession, and so forth. Despite the e�ort of historians to

establish each as �the� cause of the fall, as is the case with Flight 3597 all of these things happened

- and while each is uncommon, none is particularly unlikely, and the Roman Empire had su�ered

through each of these, often in combination, many times before. What is unique about the fall is

that all these things occurred at once. When a system or society is well designed it takes a perfect

storm - everything going wrong at once - to bring it down. But - as this paper shows - it is the

least unlikely combination of things - the least resistance direct route - that will typically lead - for

good or ill - to abrupt and sudden change.

28See AAIB (2002): (1) the pilot had a bad record of following procedures during landing and was inadequately
trained, but was allowed never-the-less to transport passengers; (2) the �ight was behind schedule and consequently
the pilot was in a hurry to land; (3) due to noise regulations the plane was diverted to a less safe runway; (4) the
runway had inadequate instrumentation and the airport parameters and protocols for landing on the runway were
inadequate; (5) the range of hills the plane crashed into was not marked on the chart; (6) the pilot put the plane into
an overly steep descent and descended too low without proper visual contact with the ground; (7) the pilot did not
monitor the proper instruments during the attempted landing.
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Appendix 1: Direct Routes

Our goal is to establish probability and expectations bounds on subsets A ⊆ AxBW 6= ∅.
De�ne t(A) = min{t(a)|a ∈ A, r(a) = r(A)} to be the minimum number of transitions of any

least resistance path in the set A. This Appendix is devoted to proving the following main result

on direct paths which characterizes their probability and length. Theorem 1 in the text follows

directly.

Theorem 11. For A ⊆ AxBW non-empty and t ≥ 0 there are bounds G(t), H(t) > 0 non-decreasing
in t such that Ct(A)εr(A) ≤ Pε(A|x) ≤ G(t(A))εr(A) and E[t(a)|x,A] ≤ H(t(A)).

The bounds G,H will be speci�cally computed.

First we establish that r(A) = mina∈A r(a) exists. Then getting a lower bound on Pε(A|x) is

relatively easy: it is bounded below by the probability of a path a ∈ A with resistance r(a), which

is to say, it is of order εr(A). The main goal is to establish a similar upper bound. The problem

is that A can easily contain in�nitely many paths with resistance r(A) as well as paths of greater

resistance. However, there are only �nitely many paths of any given length, so if there are in�nitely

many paths most of them must be very long. The idea is that since paths in A must avoid the

comprehensive set W they are not likely to be very long since there are zero resistance routes to

W . To make this precise we construct a �nite set of template paths of relatively low resistance

and show that all the paths in A can be constructed by adding loops to the template paths. We

then show that the probability of all paths constructed from a given template is bounded by the

probability of the template times a constant that does not depend on ε. This same method also

yields bounds on the expected length of the direct routes.

Loop Cutting and a Lower Bound

In general paths a ∈ A contain loops, and since an analysis of loops form a key part of the

analysis we begin by introducing the notion of loop-cutting. The idea is to construct templates for

a from which a can be reconstructed by adding loops. If a = (z0, z1, . . . , zt) we say that a′ is a

loop-cut of a at zτ = zτ ′ for t > τ ′ > τ ≥ 0 if a′ = (z0, z1, . . . , zτ , zτ ′+1, . . . , zt), that is if the loop

at zτ has been cut out.29 Note the obvious fact that r(a′) ≤ r(a).

De�nition 7. A map m from the set of all paths to itself is a loop-cutting algorithm if there is a
sequence a1, a2, . . . , aM with a1 = a, aM = m(a) and aj+1 a loop-cut of aj for j = 1, 2, . . . ,M − 1.

Note that r(m(a)) ≤ r(a). The path m(a) is a template for a from which a can be reconstructed

by adding loops. A loop cutting algorithm is maximal if m(m(a)) = m(a).

We can establish the existence of mina∈A r(a) using the zero-cut algorithm de�ned as follows.

For any a = (z0, z1, . . . zt) if there is no loop of zero resistance stop. Otherwise cut the �rst and

shortest loop of zero resistance and repeat. This is obviously maximal. Note that m(a) is a no-zero-

loop path in the sense that it contains no zero-resistance loops, and that r(m(a)) = r(a). Our �rst

29Note that there cannot be a loop-cut that begins with the �nal element zt. Indeed zt ∈ B, when the path gets
there it stops.
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step is to give a bound on the length of no-zero-loop paths. Let ZA to be the set of non-end points

touched by paths in A, that is the set of zτ such that there is some (x, z1, z2, . . . , zτ , . . . , zt) ∈ A
with τ < t - leading and trailing elements not counted. Let NA be the number of elements in

ZA and NAB the maximum of NA and the number of elements in the target B. These are both

bounded above by N , but may be much smaller: using computations based only on A allows our

results to be extended from a �nite state space to a countable state space. Let r(A) be the smallest

�nite non-zero resistance of any transition in any path in A.

Lemma 1. If a ∈ A is a no-zero-loop path30 then t(a) ≤ NAr(a)/r(A).

Proof. Observe that since non-zero resistance transitions have resistance at least r(A) there are
at most r(a)/r(A) such transitions in a, and the remaining transitions must have zero resistance.
Since there are no zero-resistance loops, the number of zero-resistance transitions between each
positive resistance transition is at most NA.

We can now apply the zero-cut algorithm to prove the basic fact that

Lemma 2. r(A) = mina∈A r(a) is well-de�ned.

Proof. Fix a ∈ A. Recall that by assumption a has positive probability for ε > 0, so that r(a) <
∞. Let m be the zero-cut algorithm. Consider that for any a′ ∈ A with r(a′) ≤ r(a) we have
r(a′) = r(m(a′)). Let A be the set of all �nite resistance paths (x, z1, z2, . . . , zτ , . . . , zt) with zt ∈ B
and zτ ∈ ZA. Since m(a′) ∈ A by Lemma 1 t(m(a′)) ≤ NAr(a)/r(A) . But there are only �nitely
many paths of length t that begin at x and take values in ZA and end in B, so only �nitely many
possible values of r(a′) ≤ r(a). Hence mina∈A r(a) exists.

Having established that r(A) is well-de�ned we can easily establish a lower bound on Pε(A|x).

Lemma 3. Pε(A|x) ≥ Ct(A)εr(A).

Proof. Let a ∈ A satisfy r(a) = r(A) and t(a) = t(A).Then

Pε(A|x) ≥ Pε(a|x) =

t(a)∏
τ=1

Pε(zτ |zτ−1) ≥
t(a)∏
τ=1

Cεr(zτ ,zτ−1) = Ct(a)εr(a).

More About Loops

To establish an upper bound we need further results about loops. First we give a useful re�ne-

ment on Lemma 1 using the all-cut algorithm, de�ned as follows. For any a = (z0, z2, . . . zt) if there

is no loop stop. Otherwise cut the �rst and shortest loop and repeat. This is obviously maximal.

Lemma 4. If a ∈ A is a no-zero-loop path then

t(a) ≤ 2NA

(
1 +

r(a)− r(A)

r(A)

)
.

30Note that this results for any set of paths A not just direct routes.
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Proof. Let m be the all-cut algorithm. Observe that to get from m(a) to a we must add loops
containing at least t(a)−t(m(a)) elements. Suppose that there are fewer than (t(a)− t(m(a))) /2NA

loops that cannot be subdivided into two non-overlapping sub-loops. Then one of these loops must
have length at least 2NA. But the �rst NA of the loop must contain a loop and so must the second
NA, so that the loop can be divided into two non-overlapping sub-loops. By assumption none of
the loops have zero resistance, so each has resistance at least r(A), hence

r(a) ≥ r(m(a)) + (t(a)− t(m(a))
r(A)

2NA

and the result follows from r(m(a)) ≥ r(A) and t(m(a)) ≤ NA.

Next we consider a loop-cutting algorithm that produces templates with resistance no smaller

than r(A). We say that m preserves r if r(a) ≥ r implies r(m(a)) ≥ r. One such algorithm is

the r-preserving algorithm. For any a = (x, z1, . . . , zt) if no loop can be cut without reducing the

resistance of a below r stop. Otherwise cut the �rst and shortest such loop and repeat. Observe

that for an r-preserving algorithm the image m(A) consists of no-zero-loop paths and is maximal

since removing any loop would necessarily reduce the resistance below r. The key property of this

algorithm is that it produces templates with resistance not too much bigger than r and of bounded

length (by Lemma 1)- and in particular that means there are �nitely many templates.

De�nition 8. r(A) to be the greatest (�nite) resistance of any transition in any path in A, and

t(A) ≡ 2NA

(
2 +

r(A)− r(AxBW )

r(A)

)
.

Lemma 5. For a ∈ A and the r(A)-preserving loop-cut algorithm r(m(a)) ≤ r(A) + NAr(A) and

t(m(a)) ≤ t(A); and m(A) is �nite with at most N
t(A)
AB elements.

Proof. Observe �rst if m is the r(A)-preserving loop-cut algorithm if r(m(a)) > NAr(A) then m(a)
must have a loop of resistance greater than zero, and hence must have a loop of resistance no
greater than NAr(A). If r(m(a)) > r(A) +NAr(A) removing such a loop leaves resistance greater
than or equal to r(A) contradicting the fact that the r(A)-preserving algorithm can leave no such
loop.

Now let m be the r(A)-preserving algorithm and suppose that r(m(a)) > r(AxBW ). Remove
the shortest loop from m(a) to get a′ so that r(m(a)) ≥ r(A) > r(a′) ≥ r(AxBW ). Since a′ has no
zero resistance loops, by Lemma 4

t(a′) ≤ 2NA

(
1 +

r(a′)− r(AxBW )

r(A)

)
.

On the other hand since the a′ is m(a) with the shortest loop - so less than NA in length - removed,
we must have t(m(a)) ≤ t(a′) +NA. Hence

t(m(a)) ≤ 2NA

(
2 +

r(a′)− r(AxBW )

r(A)

)
≤ 2NA

(
2 +

r(A)− r(AxBW )

r(A)

)
= t(A)

If r(m(a)) = r(A) then m removes all the loops, so we have the bound t(m(a)) ≤ NA so that
certainly t(m(a)) ≤ t(a) and that bound holds in all cases.
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Finally, since a ∈ m(A) are constructed of elements from ZA ∪B and have length at most t(A),

there are at most N
t(A)
AB elements.

We also can give a bound in terms of t(a)

Lemma 6. We have

t(A) ≤ 2NA

(
2 +

t(A)r(A)

r(A)

)
Proof. Clearly r(A) ≥ 0. Moreover, since there is a path a ∈ A with length t(a) = t(A), such a
path can have resistance at most t(A)r(A), so r(A) cannot be greater than this.

Upper Bounds

Once the loops have been removed to create templates, we must put them back in to compute

probabilities. It is convenient at this point to work with loops with �rst element removed, so that

a loop at zτ is a sequence of the form ∅, (zτ ) or (ζτ , . . . , ζτ+k, zτ ) where ζτ ∈ ZA.31 If we have a

transition (zτ , zτ+1) and `τ is a loop at zτ then the corresponding path is a = (zτ , `τ , zτ+1), with

number of transitions t(a) equal to the number of elements of `τ plus 1.

For any path a = (x, z1, z2, . . . , zt) and 0 ≤ τ ≤ t let a[τ ] = (x, z1, z2, . . . , zτ ) be the correspond-

ing τ -truncation. Then for any a = (z0, z1, z2, . . . , zt) ∈ A, τ < t and path a′ consider the path

(a[τ ], a′) = (z0, z1, z2, . . . , zτ , a
′) that starts along a and deviates to a′ at zτ . De�ne tF (a, τ) to be

the least length of any path (zτ , a
′) that has zero resistance and (a[τ ], a′) 6/∈ A (so that the deviation

does not reach B). Notice that tF (a, τ) ≤ N − 1: since W is comprehensive there is a path (zτ , a
′)

of zero resistance with no loops that ends in W , and such a path can have at most N elements,

hence at most N − 1 transitions.

De�nition 9. The failure time tF (A) = maxa∈A,τ<t(a) tF (a, τ).

Hence tF (A) ≤ N − 1 but may be much smaller: in one of the examples in the text tF (A) = 1

regardless of N .

To establish upper bounds on the probability of A and on the expected length of its paths, we

start by establishing the fact that, given that W is comprehensive, long loops are not very likely.

Let bRc be the largest integer not greater than R. We can now give the following bound on the

probability of long loops.

Lemma 7. Suppose z ∈ ZA and that LA(z) is a set of loops at z. Then for t ≥ 0 we have
Pε
(
t((z, `, y)) = t+ 1, ` ∈ LA(z)|z

)
≤ Pε(y|z)(1− CtF (A))bt/tF (A)c .

Proof. If t = 0 the result is immediate since in fact the left and right sides are equal. Since (z, `, y)
always ends with the transition (z, y) we have

Pε
(
t((z, `, y)) = t+ 1, ` ∈ LA(z)|z

)
≤ Pε(y|z)

31Note that we must include ∅ because when we compute probabilities of transitions from z to y along a set of
loops, we must also include the probability that we go directly from z to y without a loop, that is, along a null loop.
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for all t and in particular for t < tF (A) which is the desired bound in that case. If t ≥ tF (A) we may
de�ne Lkto be the set of paths (z, `) with ` ∈ LA(z) truncated at ktF (A) for 1 ≤ k ≤ bt/tF (A)c
and we have

Pε
(
t((z, `, y)) = t+ 1, ` ∈ LA(z)|z

)
≤ Pε(Lbt/tF (A)c|z)Pε(y|z)

Moreover Lbt/tF (A)c ⊆ Lk for 1 ≤ k ≤ bt/tF (A)c, so it su�ces to prove recursively that Pε(Lk|z) ≤
(1− CtF (A))k for 1 ≤ k ≤ bt/tF (A)c.

First we take k = 1. Observe that starting at z there is a zero resistance path of length no
longer than tF (A) that reaches a point y that is contained in no loop. Since the probability of each
zero-resistance transition is at least C there is at most a probability 1−CtF (A) of remaining in the
set L1.

Now we suppose the result is true for k and prove it for k + 1. Each loop in Lk+1 has the form
(a1, z

′, a2) where (a1, z
′) ∈ Lk and t(a2) = tF (A). Let L+(a1, z

′) be the set {a2|(a1, z
′, a2) ∈ Lk+1}.

Then

Pε(Lk+1|x) =
∑

(a1,z′)∈Lk

∑
a2∈L+(a1,y)

Pε((a1, z
′)|x)Pε(a2|z′)

=
∑

(a1,z′)∈Lk

Pε((a1, z
′)|x)

∑
a2∈L+(a1,y)

Pε(a2|z′)

=
∑

(a1,z′)∈Lk

Pε((a1, z
′)|x)Pε(L

+(a1, z
′)|z′).

Moreover, since again there is a zero resistance path starting at z′ of length no longer than tF (A)
that reaches a point y′ that is contained in no loop we have Pε(L

+(a1, z
′)|z′) ≤ 1− CtF (A). Hence

Pε(Lk+1|x) ≤
∑

(a1,z′)∈Lk

Pε((a1, yz
′)|x)(1− CtF (A))

= Pε(Lk|x)(1− CtF (A))

≤ (1− CtF (A))k+1

by the inductive hypothesis.

We are now ready to reverse the loop-cutting procedure by adding loops to templates to con-

struct the paths in A. Opposite to a loop cutting algorithm is the idea of a loop insertion set. Let

LA(zτ ) be a set of loops at zτ . We suppose we are given an a = (z0, z1, . . . . , zt) ∈ A. A loop set

m−1(a) is de�ned by a sequence of sets of loops Lτ ⊆ LA(zτ ), τ = 0, 1, . . . t − 1 and consists of all

paths of the form (z0, `0, z1, `1, . . . , zt−1, `t−1, zt) such that `τ ∈ Lτ . If m is a loop-cutting algorithm

and a ∈ m(A) if m−1(a) ⊇ A ∩m−1(a) we say that m−1(a) covers m, a.

We now de�ne

Sk(m−1(a)|x) ≡
∞∑
t0=0

∞∑
t1=0

. . .
∞∑

tt(a)−1=0


t(a)−1∑

s=0

ts

k
 t(a)−1∏

τ=0

Pε
(
t((zτ , `, zτ+1)) = tτ + 1, ` ∈ Lτ |zτ

)
.

The signi�cance of these numbers is given by the following
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Lemma 8. If m−1(a) covers m, a then∑
a′∈m−1(a)

Pε(a
′|x) ≤ S0(m−1(a)|x)

∑
a′∈m−1(a)

t(a′)Pε(a
′|x) ≤ S1(m−1(a)|x)

and both holds with equality if every a′ ∈ m−1(a) has a unique representation of the form a′ =
(z0, `0, z1, `1, . . . zt) where `τ ∈ Lτ .

Proof. By de�nition every a′ ∈ m−1(a) has a representation of the form a′ = (z0, `0, z1, `1, . . . zt)
where `τ ∈ Lτ .32 Hence for any non-negative function f(a′) we have

∑
a′∈m−1(a)

f(a′)Pε(a
′|x) ≤

∑
`0∈L0

∑
`1∈L1

. . .
∑

`t(a)−1∈Lt(a)−1

f((z0, `0, z1, `1, . . . zt))

t(a)−1∏
τ=0

Pε(`τ |zτ )

with equality if the representation is unique - that is, if each a′ has a unique representation then it
appears exactly once in the sum. Rearranging the sum by adding over the length of the loops then
gives the desired result.

We can now compute the desired upper bounds. First we have

Lemma 9. S0(m−1(a)|x) ≤ Pε(a|x)
[
tF (A)/CtF (A)

]t(a)
and S1(m−1(a))/S0(m−1(a)) ≤ 3t(a)tF (A)2/C2tF (A)

Proof. From Lemma 7 we have

S0(m−1(a)|x) =
∞∑
t0=0

∞∑
t1=0

. . .
∞∑

tt(a)−1=0

t(a)−1∏
τ=0

Pε(t((zτ , `, zτ+1)) = tτ + 1, ` ∈ Lτ |zτ )

=

t(a)−1∏
τ=0

∞∑
t=0

Pε(t((zτ , `, zτ+1)) = t+ 1, ` ∈ Lτ |zτ )

≤
t(a)−1∏
τ=0

∞∑
t=0

Pε(zτ+1|zτ )(1− CtF (A))bt/tF (A)c

=

t(a)−1∏
τ=0

Pε(zτ+1|zτ )

 t(a)−1∏
τ=0

∞∑
t=0

(1− CtF (A))bt/tF (A)c

= Pε(a|x)
[
tF (A)/CtF (A)

]t(a)

Next to simply notation set

Pτ (tτ ) ≡ Pε(t((zτ , `, zτ+1)) = tτ + 1, ` ∈ Lτ |zτ ).

32A simple example shows that there can be more than one representation. Suppose (z0, z1, z2) ∈ m(A). If
`0 = (z1, z0), `1 = ∅ then a′ = (z0, `0, z1, `1, z2) = (z0, z1, z0, z1, z2). If `0 = ∅, `1 = (z0, z1) then (z0, `0, z1, `1, z2) =
(z0, z1, z0, z1, z2) = a′.
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Then

S1(m−1(a)|x) =

∞∑
t0=0

∞∑
t1=0

. . .

∞∑
tt(a)−1=0

(t(a)−1∑
s=0

ts

) t(a)−1∏
τ=0

Pτ (tτ )

=

t(a)−1∑
s=0

∞∑
t0=0

∞∑
t1=0

. . .
∞∑

tt(a)−1=0

ts

t(a)−1∏
τ=0

Pτ (tτ )

=

t(a)−1∑
s=0

(∑∞
t=0 tsPs(t)∑∞
t=0 Ps(t)

) t(a)−1∏
τ=0

∞∑
t=0

Pτ (t)

=

t(a)−1∑
s=0

(∑∞
t=0 tsPs(t)∑∞
t=0 Ps(t)

)
S0(m−1(a)|x).

Moreover,

∞∑
t=0

Ps(t)) ≥ Ps(1) = Pε(t((zs, `, zs+1)) = 1, ` ∈ Lτ |zs)

= Pε(zs+1|zs)

and applying again Lemma 7 and using a summation formula proven in Web Appendix 1 Lemma
11 we have

S1(m−1(a)|x)/S0(m−1(a)|x) ≤
t(a)−1∑
s=0

(∑∞
ts=0 tsPε(zs+1|zs)(1− CtF (A))bts/tF (A)c

Pε(zs+1|zs)

)

= t(a)
∞∑
ts=0

ts(1− CtF (A))bts/tF (A)c

≤ t(a)3tF (A)2/C2tF (A)

which is the desired bound.

We can now establish the upper bounds stated in Theorem 11.

Theorem 12. If A ⊆ AxBW is non-empty then Pε(A|x) ≤
[
NABDtF (A)/CtF (A)

]t(A)
εr(A).

Proof. Take m to be the r(A)-preserving loop cut algorithm, and for a ∈ m(A) take m−1(a) to be
de�ned by the sequence Lτ = LA(zτ ). Let T (A) = maxa∈m(A) t(a) ≤ t(A). Since Pε(m−1(a)|x) ≤
S0(m−1(a)|x) we may apply Lemma 9 and use the fact that m−1(a) covers m, a to conclude

Pε(A|x) ≤ #m(A)εr(A)
[
DtF (A)/CtF (A)

]T (A)
. Moreover, by Lemma 5 we have #m(A) ≤ N

t(A)
AB

giving the desired result.

Theorem 13. If A ⊆ AxBW is non-empty then

E[t(a)|x,A] ≤ t(A)

[
3tF (A)2

C2tF (A)

] [
NABDtF (A)/CtF (A)

]t(A)

Ct(A)
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and if A are the least resistance paths and t̃(A) is the longest least resistance path containing no
loops then

E[t(a)|x,A] ≤ t̃(A)

[
3tF (A)2

C2tF (A)

]
.

Proof. In all cases by Lemma 9 we have for any loop cutting algorithm that preserves r(A)

E[t(a)|x,A] ≤
∑

a∈m(A) S1(m−1(a)|x)

Pε(A|x)

=
∑

a∈m(A)

S1(m−1(a)|x)

S0(m−1(a))

S0(m−1(a))

Pε(A|x)

≤ 3tF (A)2

C2tF (A)

∑
a∈m(A)

t(a)S0(m−1(a))

Pε(A|x)
.

In general we can take m to be the r(A)-preserving loop cut algorithm, and for a ∈ m(A) take

m−1(a) to be de�ned by the sequence Lτ = LA(zτ ). Then we observe that there are at most N
t(A)
AB

templates and apply Theorems 3 and 12 to get

E[t(a)|x,A] ≤ 3tF (A)2

C2tF (A)
N
t(A)
AB

t(A)Dt(A)εr(A)
[
tF (A)/CtF (A)

]t(A)

Ct(A)εr(A)

giving the �rst result.
Now suppose that A are the least resistance paths. We can now take m to be the all-cut

algorithm, which, since no least resistance path can have a positive resistance loop in it, is the
same as the zero-cut algorithm when applied to A. For a ∈ m(A) we now take m−1(a) to be
de�ned by the sequence Lτ of zero-resistance loops in LA(zτ ) which do not contain zs for s < τ . 33

First we observe that m−1(a) = m−1(a) ∩ A. Starting at zτ the all-cut algorithm cuts the
longest loop ending at zτ , hence zτ cannot subsequently appear in the template. Moreover, the
loops added back are exactly the ones that were cut. Second we observe that for a given template
(z1, z2, . . . , zt) ∈ m(A) and two states a′ = (z0, `

′
0, z1, `

′
1, . . . , zt), a” = (z0, `0”, z1, `1”, . . . , zt) ∈

m−1(a) then a′ = a” only if `′0, `
′
1, . . . , `

′
t−1 = `0”, `1”, . . . , `t−1”. Hence S0(m−1(a)) = Pε(m

−1(a)∩
A). So

E[t(a)|x,A] ≤ 3tF (A)2

C2tF (A)

∑
a∈m(A)

t(a)Pε(m
−1(a) ∩A)

Pε(A|x)

=
3tF (A)2

C2tF (A)

∑
a∈m(A)

t(a)Pε(m
−1(a) ∩A)∑

a∈m(A) Pε(m
−1(a) ∩A)

≤ t̃(A)
3tF (A)2

C2tF (A)
.

giving the second result.

33Notice that the construction in the example of Footnote 32 is ruled out in the present case.
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Appendix 2: Quasi-Direct Routes

We �x a start point x ∈ Ωx, a target set B and quasi-comprehensive forbidden set W ⊇ B,

and let QxBW be the corresponding non-empty set of quasi-direct routes. Recall that the paths

a ∈ QxBW can be decomposed as a1, a2, · · · , an(a), a
+ where the ai ∈ AxxW are loops from x to x

that do not touch x or W in between and a+ ∈ AxBW is the exit path, a direct route from x to B

that does not touch W nor x in between.

Theorem. [Theorem 3 in text] Let A = {a ∈ QxBW |ρ(a) = ρ(QxBW )} denote the least peak

resistance paths in QxBW . Then limε→0
Pε(A|x)

Pε(QxBW \A|x) =∞.

Proof. Fix ρ = ρ(QxBW ). By Theorem 2 the set A consists of the set of paths of the form
a1, a2, . . . , an, a

+ where ai ∈ AxxW and a+ ∈ AxBW and r(ai) ≤ ρ, r(a+) = ρ. De�ne the set of
paths A>ρ as those having the form a1, a2, . . . , an, an+1 where ai ∈ AxxW and an+1 ∈ AxxW ∪AxBW
and r(ai) ≤ ρ, r(an+1) > ρ. We claim that Pε(A>ρ|x) ≥ Pε(QxBW \A|x) so that it will su�ce to

prove thatlimε→0
Pε(A|x)
Pε(A>ρ|x) = ∞. To prove this claim observe that if a ∈ QxBW \A then the �rst

part of the path must necessarily lie in A>ρ so the event QxBW \A implies the event A>ρ.
Now let AρxxW , A

ρ
xBW , A

>ρ
xxW , A

>ρ
xBW denote the subsets of resistance exactly equal to ρ and

strictly bigger than ρ respectively. We compute

Pε(A|x)

Pε(A>ρ|x)
=

∑∞
n=0 P

n
ε (AρxxW |x)Pε(A

ρ
xBW |x)∑∞

n=0 P
n
ε (AρxxW |x)Pε(A

>ρ
xxW ∪A

>ρ
xBW |x)

=
Pε(A

ρ
xBW |x)

Pε(A
>ρ
xxW ∪A

>ρ
xBW |x)

≥
Pε(A

ρ
xBW |x)

Pε(A
>ρ
xxW |x) + Pε(A

>ρ
xBW |x)

and the result now follows directly from Theorem 1 on the probability of direct paths.

When B = W the decomposition also makes it easy to do computations since the loops ai are

independent identically distributed random variables. Speci�cally, for f : AxxW → < and a ∈ A
de�ne F (a) ≡

∑n(a)
i=1 f(ai). Then for any function g(n) of the number of loops we have

Lemma 10. if B = W then E(Fg|x,QxBW ) = E(f |x,A0)E(ng|x,QxBW ), and Pε(n|x,QxBW ) is
geometric with E(n|x,QxBW ) = (1/Pε(AxBW |x))− 1

Proof. Since B = W we have Pε(AxxW |x) + Pε(AxBW |x) = 1, while AxxW and AxBW are disjoint.
Then abbreviating Q = QxBW we get

E(Fg|x,Q) = E[
n∑
i=1

f(ai)g|x,Q] = E[
n∑
i=1

E[f(ai)g|x,Q, n]|x,Q] = E[
n∑
i=1

gE[f(ai)|x,Q, n]|x,Q].

The event (Q,n) is exactly the event ai ∈ AxxW for i = 1, 2, . . . , n and an+1 ∈ AxBW and conditional
on x these are independent events. Hence E(f(ai)|x,Q, n) = E(f |x,AxxW ).We conclude that

E(Fg|x,Q) = E[

n∑
i=1

gE(f |x,A0)|x,Q]

= E(f |x,A0)E[

n∑
i=1

g|x,Q] = E(f |x,A0)E[ng|x,Q].
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This is the �rst result. Also since Pε(AxxW |x) + Pε(AxBW |x) = 1 it follows that n is geometrically
distributed with success probability Pε(AxBW |x) which gives the stated expected value.

Recall thatM(a,A) is the number of loops of a that lie in A ⊆ AxxW . That is, if f : AxxW → <
is the indicator of A (taking the value one if a0 ∈ A and zero otherwise) then M(a,A) is the

aggregate F de�ned by F (a,A) ≡
∑n(a)

i=1 f(ai). Also, recall that t
−(a) is the amount of time along

a spent outside of Ω(x). Let ZxW be the subset of Z that is reachable by �nite resistance paths

that start at x and touch W at most once and Let NxW be the number of elements in ZxW . This

is bounded above by N , and sets A of direct routes that we consider satisfy ZA ⊆ ZxW so that

NAB ≤ NxW . De�ne

G1 ≡
[
N2
xWD/C

NxW
]NxW

, H1 =
6N3

xWG1

C3NxW

Theorem. [Theorem 4 and �rst two parts of Theorem 5 in text] If B = W then

ε−r(AxBW )/G1 ≤ Eε[t(a)|x,QxBW ], Eε[t(a
−)|x,QxBW ] ≤ H1

(
1 + C−2NxW ε−r(AxBW )

)
ε−r(AxBW )

while

lim
ε→0

Eε[
t−(a)

t(a−)
|x,QxBW ] = 0.

For A ⊆ AxxW

G−1
1 C2NxW εr(A)−r(AxBW ) ≤ Eε[M(a,A)|x,QxBW ] ≤ G1C

−2NxW εr(A)−r(AxBW )

and if r(A) < r(AxBW ) then for all k ≥ 0

lim
ε→0

Pε[M(a,A) > k|x,QxBW ] = 1.

Proof. Observe that for A ∈ {AxxW , AxBW } tF (A) ≤ NxW and t(A) = 4NA ≤ 4NxW so that the
bound from Theorem 12 is in turn bounded by G1 and that from Theorem 13 by H1.

From Lemma 10 Eε[t(a
−)|x,QxBW ] ≤ Eε[t|x,AxxW ]/Pε(AxBW |x). Moreover, recall that t(A)

is the number of transitions in the shortest of the least resistance paths in A; since AxxW contains
all zero resistance loops r(AxxW ) = 0, the shortest of these loops is no longer than NxW ; so
t(AxxW ) ≤ NxW . Analogously, AxBW contains templates without loops hence t(AxBW ) ≤ NxW .
Hence from Theorems 12 and 13 we have 1 ≤ Eε[t|x,AxBW ] ≤ H1, 1 ≤ Eε[t|x,AxxW ] ≤ H1 and
CNxW εr(AxBW ) ≤ Pε(AxBW |x) ≤ G1ε

r(AxBW ). This gives the stated bounds on Eε[t|x,QxBW ].
Now set τ− = t−(a) and τ = t(a−). For the next part observe that Eε[τ

−/τ |x,QxBW ] ≤
Eε[τ

−/n|x,QxBW ] = Eε[t
−(a)|x,AxxW ]. Now split AxxW into two disjoint sets A0

0 of paths of zero
resistance and A0

r of positive resistance, where r is the least positive resistance in AxxW . Then
Eε[t

−|x,AxxW ] = Eε[t
−|x,A0

0]Pε[A0
0|x,AxxW ]+Eε[t

−|x,A0
r ]Pε[A0

r |x,AxxW ]. However Eε[t
−|x,A0

0] =
0 by de�nition, while by Theorems 12 and 13

Eε[t
−|x,A0

r ]Pε[A0
r |x,AxxW ] ≤ [H1G1/C

t(A0
r)]εr → 0

which implies the result.
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Next, given A ⊆ AxxW and f the indicator of A, Lemma 10 gives

Eε[M(a,A)|x,QxBW ] = Eε[F |x,QxBW ] = Eε(f |x,AxxW )/Pε(AxBW |x)

= Pε(A|x,AxxW )/Pε(AxBW |x).

Applying Theorem 12 (and recalling that r(AxxW ) = 0) then gives the stated bounds on M(a,A).
Lastly, since Pε(n|x,QxBW ) is geometric, we have Pε(n(a) ≥ n|x,QxBW ) = (1− Pε(AxBW |x))n

and

Pε[M(a,A) > k|x,QxBW , n(a) = n] = 1−
k∑
i=0

(
n
i

)
Pε(A|x)i(1− Pε(A|x))n−i

≥ 1− (k + 1)nk(1− Pε(A|x))n

By hypothesis we can choose r(A) < r < r(AxBW ). Take n = ε−r. Then by Theorem 12 we

have Pε(n(a) ≥ n|x,QxBW ) ≥
(
1−G1ε

r(AxBW )
)ε−r

and Pε[M(a,A) > k|x,QxBW , n(a) = n] ≥
1− (k+ 1)ε−rk(1−G1ε

r(A))ε
−r
. Taking the log of the �rst expression and using de l'Hospital's rule

gives as ε→ 0

lim
log
(
1−G1ε

r(AxBW )
)

εr
= lim−G1r(AxBW )εr(AxBW )−1

rεr−1
(
1−G1εr(AxBW )

) = lim−G1r(AxBW )

r
εr(AxBW )−r = 0

so that Pε(n(a) ≥ n|x,QxBW )→ 1. Next take the log of ε−rk(1−G1ε
r(A))ε

−r
to �nd

−rk log ε+ ε−r log(1−G1ε
r(A)) =

[
1− rk log ε

ε−r log(1−G1εr(A))

]
ε−r log(1−G1ε

r(A)).

Then by de l'Hospital's rule

lim
rk log ε

ε−r log(1−G1εr(A))
= lim

rk

− r log(1−G1εr(A))
εr − G1r(A0)εr(A)−r

log(1−G1εr(A))

≤ − lim
rk log(1−G1ε

r(A))

G1r(A)εr(A)−r = 0

and

lim
log(1−G1ε

r(A))

εr
= lim− G1r(A)εr(A)−r

r
(
1−G1εr(A)

) = −∞

so −rk log(ε) + ε−r log(1 − G1ε
r(A)) → −∞ and ε−rk(1 − G1ε

r(A))ε
−r → 0. Hence Pε[M(a,A) >

k|x,QxBW , n(a) = n]→ 1.

Recalling that AxxW (t) are the loops which spend at least t consecutive periods outside of Ωx

we now prove the corollary.

Corollary 6. [Final part of Theorem 5 in text] If there is a path a0 ∈ AxxW that contains a zero
resistance loop not touching Ω(x) with 0 < r(a0) < r(AxBW ) then for any k > 0

lim
ε→0

Pε(M(a,AxxW (kt(a+))) > k|x,QxBW ) = 1

Proof. Fix a δ > 0. By Theorem 11 and Chebychev's inequality we may choose K such that
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Pε(t(a
+) > K) < 1 − δ. Given a0 as described, we can insert zero resistance loops to get a path

aK ∈ AxxW (K) with resistance r(aK) < r(AxBW ). Hence we may apply Theorem 8 to conclude
that for all su�ciently small ε

Pε[M(a,AxxW (K)) > K|x,QxBW ] < 1− δ;

since conditional on x the loops and exit path are independent, we then have

Pε(M(a,AxxW (kt(a+))) > K|x,QxBW ) < (1− δ)2,

which implies the desired result.

Appendix 3: Ergodic Probabilities and Bounds

Theorem. [Theorem 7 in text] If y ∈ Ωx then

lim
ε→0

µε(x)

µε(y)
=
µ0(x)

µ0(y)
.

Proof. Partition the matrix Pε with rows corresponding to source states and columns to target
states into P ijε where i, j = 1 corresponds to Ωx and i, j = 2 corresponds to Ω\Ωx. In particular
P 11 is square, the size of Ωx. Correspondingly let ei be the column vectors of ones with dimension
corresponding to i = 1, 2. De�ne the row vector µε(z) = µε(z)/

∑
y∈Ω(x) µε(y), and partition

this vector conformally. Since µεis normalized to one on Ωx and µ0 is strictly positive, it su�ces
to prove that as ε → 0 every limit point µ1

ε is equal to µ1
0 where we include the superscript to

emphasize that we are dealing only with the invariant distribution on Ωx. The invariance condition
is µ1

ε = µ1
εP

11
ε +µ2

εP
21
ε . Multiplying this on the right by e1 we get 1 = µ1

εP
11
ε e1 +µ2

εP
21
ε e1 while the

fact that Pε is a Markov kernel means that P 11
ε e1 +P 12

ε e2 = e1 or P 11
ε e1 = e1−P 12

ε e2. Substituting
we see that 1 = µ1

ε (e
1 − P 12

ε e2) + µ2
εP

21
ε e1 = 1 − µ1

εP
12
ε e2 + µ2

εP
21
ε e1 so that µ2

εP
21
ε e1 = µ1

εP
12
ε e2,

which says roughly that the steady state �ow into Ωx must equal the steady state �ow out. Now
P 12
ε → 0 as ε → 0 since these are the probabilities of leaving the recurrent communicating set

Ωx; hence µ
2
εP

21
ε e1 → 0. But µ2

εP
21
ε is a non-negative vector, so µ2

εP
21
ε e1 → 0 is possible only if

µ2
εP

21
ε → 0. Then in the invariance condition µ1

ε = µ1
εP

11
ε + µ2

εP
21
ε as P 11

ε → P 11
0 if µ1

00 is a limit
point of µ1

ε it must satisfy the limiting condition that µ1
00 = µ1

00P
11
0 . However, as Ωx is recurrent

communicating this equation has only one solution µ1
0, so we conclude that in fact µ1

ε → µ1
0.

Recall that r(Ωx) = minΩy∈Ω r(Ωx,Ωy). Also let r, r be the largest resistance of any transition

and smallest positive resistance, and set G ≡ G1((N − 1) (1 + (r/r))).

Theorem. [Theorem 8 in text] Allowing that Ωx may be empty, if A = AxyW are the direct routes
from x to y with forbidden set W = {x} ∪ {y} ∪ (Ω\Ωx) then µε(y) ≥ µε(x)CN εr(A). If x ∈ Ωx and

there is a zero resistance path from y to x then also µε(y) ≤ µε(x)C−NG
2
εmin{r(A),r(Ωx)}.

Proof. We use the standard fact about Markov ergodic probabilities as used for example by Ellison
(2000): if we let Nε(y, x|x) be the expected number of times y occurs before x starting at x then
µε(y) = µε(x)Nε(y, x, |x).

The lower bound is immediate: since with probability Pε(A) we have y hit once without return-
ing to x we have from Theorem 11 µε(y) = µε(x)Nε(y, x|x) ≥ µε(x)Pε(A) ≥ µε(x)Cεr(A).

Next we suppose that y has zero resistance for getting to x ∈ Ωx. We use the reverse condition
µε(x) = µε(y)Nε(x, y, |y), so we must �nd a lower bound on Nε(x, y|y). Let A1 = Ayx(x∪y∪(Ω\Ωx)).
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Observe that Nε(x, y|y) ≥ Pε(A1)Nε(x, y|x). Since there is a zero resistance path from y to x we
have from Theorem 11 the bound Pε(A1) ≥ CN , so Nε(x, y|y) ≥ CNNε(x, y|x).

Now de�ne sets B = {y} ∪ (Ω\Ωx) and A2 = AxB(x∪B). Then Nε(x, y|x) ≥ Nε(x,B|x)). Since
starting at x the events B and ∼ B = A2 are mutually exclusive independent events, Nε(x,B|x)) =
1/Pε(∼ B) = 1/Pε(A2). From Theorem 11 Pε(A2) ≤ εr(A2), and we get Nε(x, y|y) ≥ CN ε−r(A2)/G,

or µε(y) ≤ µε(x)C−NG
2
εr(A2).

Finally the event A2 is contained in the event Axy(x∪y∪(Ω\Ωx) ∪Ax(Ω\Ωx)(x∪(Ω\Ωx)). Hence

r(A2) = min{r
(
Axy(x∪y∪(Ω\Ωx)

)
, r
(
Ax(Ω\Ωx)(x∪(Ω\Ωx))

)
}.

However r
(
Ax(Ω\Ωx)(x∪(Ω\Ωx))

)
= r(Ωx) and r

(
Axy(x∪y∪(Ω\Ωx)

)
= r(A) which gives the desired

upper bound.
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Web Appendix 1: Further Bounds on the Length of Direct Paths

We �rst prove two lemmas.

Lemma 11. For 0 < C < 1 and tF ≥ 0 we have
∑∞

ts=0 ts(1− CtF )bts/tF c ≤ 3t2F /C
2tF

Proof. We have

∞∑
ts=0

ts(1− CtF )bts/tF c =
∞∑
k=0

tF∑
h=1

(ktF + h)(1− CtF )k

=

tF∑
h=1

(
tF

∞∑
k=0

k(1− CtF )k + h

∞∑
k=0

(1− CtF )k

)

=

tF (A)∑
h=1

(
tF (1− CtF )/C2tF + h/CtF

)
=

(
t2F (1− CtF )/C2tF + (t2F + tF )/(2CtF )

)
≤ 3t2F /C

2tF

giving the desired result.

Lemma 12. . If A ⊆ AxBW is not empty and W is comprehensive then for t ≥ 0 we have

Pε
(
t(a) = t+ 1, a ∈ A|x

)
≤ (1− CtF (A))b(t+1)/tF (A)c

and if B is a singleton then

Pε
(
t(a) = t+ 1, a ∈ A|x

)
≤ max

(x,z1,z2,...,zt−1,zt)∈A
Pε(zt(a)|zt−1(a))(1− CtF (A))bt/tF (A)c

Proof. The �rst inequality was proven in the course of proving Lemma 7. The second makes use
of the fact that in the course of proving Lemma 7 we used only the fact that all the loops ended
at the same target and that all had the same transition probability at the end. If we replace the
unique �nal transition probability with the maximum over all �nal transition probabilities the same
argument goes through.

In Theorem 13 a better bound is given for least resistance paths that exploits the fact that

they have a special structure. The idea is that long least resistance paths are not likely to be very

long because to be long they must contain long loops, and long loops are not very likely. For least

resistance paths these loops must have zero resistance, however in a large state space we could

have zero resistance pieces of least resistance paths that are �unnecessarily� long but do not in fact

loops. Our goal is to show that these too are unlikely. To do so, we introduce the idea of a waypoint

of a path a = (z0, z1, . . . , zt). Let (zτ−1, zτ ) be the �rst transition in the path that has positive

resistance. The �rst waypoint is de�ned as zτ . Similarly, the second waypoint is de�ned to be the

end of the second transition in the path that has positive resistance and so forth. We say that

two paths a, a′ are equivalent, written a ∼ a′ if they have the same waypoints. The idea is now

to give conditions for least resistance paths under which the amount of time between waypoints is

bounded independent of the size of the state space, and consequently get a bound on the expected
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length of least resistance paths of order equal to the number of waypoints. Let Y (A) be the set of

sequences of waypoints derived from paths in A, and for any given sequence of waypoints y ∈ Y (A)

let Aτ−1(y) be the set of least resistance paths from zτ−1 to zτ .

Theorem 14. If W is comprehensive and A ⊆ AxBW not empty is the set of all least resistance
paths then

Eε(t(a)|x,A) ≤ max
y=(z0,z1,...,zt−1)∈Y (A)

t
[

max
0≤s≤t−1

3DtF (As(y))2/C2tF (As(y))+t(AS(y))
]

Proof. Pick y = (z0, z1, . . . , zt−1) ∈ Y (A), that is a sequence of waypoints, and let Ay be the
paths with those waypoints. Notice these sets form a partition of A. If aτ is a sequence of states
(indexed starting with 1), let zs(τ) be the sth element of the sequence and s(τ) the length of the
sequence. Since that paths in question are least resistance paths, they are exactly paths of the form
(a0, a1, . . . , at−1) where

* z1(0) = x
* either zs(t−1)(t− 1) ∈ B or zt−1 ∈ B, at−1 = ∅
* any transitions in aτ have zero resistance
* transitions zs(τ−1)(τ − 1), z1(τ) have positive resistance rτ−1 that depends only on τ
* (aτ−1, z1(τ)) is a least resistance path from z1(τ − 1) to z1(τ) (with forbidden set W ).
Put di�erently, setting Aτ−1 = Aτ−1(y) (the set of least resistance paths from zτ−1 to zτ ) then

a path is a least resistance path if and only if aτ−1 ∈ Aτ−1and aτ ∈ Aτ implies that any transitions
in aτ have zero resistance, and the transition zs(τ−1)(τ − 1), z1(τ) has positive resistance equal to
rτ−1 independent of which path in Aτ−1 is chosen. Let Pτ (t) ≡ Pε

(
t((a, zτ+1)) = t+ 1, a ∈ Aτ |x

)
.

Then (using the same algebra as Lemma 9) we have

E(t(a)|x,Ay) =

∑∞
t0=0

∑∞
t1=0 . . .

∑∞
tt−1=0

(∑t−1
s=0 ts

)∏t−1
τ=0 Pτ (tτ )∏t(a)−1

τ=0

∑∞
t=0 Pτ (t)

=

t−1∑
s=0

∑∞
t=0 tsPs(t)∑∞
t=0 Ps(t)

.

As in Lemma 7 by using Lemma 12 and Lemma 11 we �nd

∞∑
t=0

tsPs(t) ≤
∞∑
ts=0

tsDε
rs(1− CtF (As))bts/tF (As)c

≤ Dεrs3tF (As)
2/C2tF (As).

On the other hand,
∑∞

t=0 Ps(t) ≥ Ct(As)εrs , which gives the desired bound.

As we move away from a recurrent communicating class along a least resistance path, initially

we are in the basin of the class and we encounter resistance. This gives a natural monotonicity to

this part of the path: each time we encounter resistance we cannot go back and do it again because

to do so would add unnecessary resistance. The bounds in Theorem 14 exploits this monotonicity

and so is useful in bounding the time it takes to get out of the basin. However, once we leave the

basin there will be zero resistance paths to other recurrent communicating classes, and so there will

be no more waypoints and the bound is not useful. Indeed, as Web Appendix 2 shows, the length
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of time in this region may not scale. However, in applications such as the model of hegemony,

once we get close enough to the recurrent communicating class that will be the end of the least

resistance path, there may be a form of monotonicity: in the example there is a point at which the

eventual hegemon can only gain land (along a least resistance path) and not lose it. If in place of

the natural monotonicity of Theorem 14 we assume monotonicity then we can get a bound for this

�nal segment of the least resistance path.

To formalize this, we �rst give a bound on the probability of zero resistance paths in the basin.

Suppose that for comprehensive W the set A ⊆ AxBW of least resistance paths is not null. De�ne

rxBW ≡ min{r(Ax(W\B)W ), r(AxBW \A)} and txBW ≡ max{t(Ax(W\B)W ), t(AxBW \A)}. Notice

that rxBW > 0 means that r(A) = 0 since there must be some zero resistance path from x to W ,

and that x is in the basin of B since all 0 resistance direct routes from x to B are in A.

Theorem 15. If rxBW > 0 thenPε(A|x) ≥ 1− 2G(txBW )εrxBW .

Proof. Since W is comprehensive, with probability 1 every path originating at x hits W with
probability 1. Hence Pε(Ax(W\B)W |x) + Pε(AxBW \A|x) + Pε(A|x) = 1. However, by Theorem 11
we have Pε(Ax(W\B)W |x), Pε(AxBW \A|x) ≤ G(txBW )εrxBW giving the desired result.

Now consider a sequence of targets B1, B2, . . . , Bt where Bt = B. Also set B0 = {x}. For any
a starting at x we may consider t1(a) the �rst time B1 is hit before hitting W , possibly in�nite,

and if B1is hit before W we may consider t2(a) the additional amount of time from �rst hitting B1

until B2is hit before hitting W , again in�nite if either target is not hit before reaching W , and so

forth. We say that the sequence is a Liapuno� sequence for A if for every a we have tτ (a) < ∞.

In this case the sequence of states (z1, z2, . . . , zt) that are hit are similar to waypoints. For y ∈ Bτ
let Aτ (y) ≡ A(y,Bτ+1,W ). Let tFF (A) ≡ max0≤τ<t tF (Aτ ). Then

Theorem 16. If B1, B2, . . . , Bt is a Liapuno� sequence for least resistance paths A then

Eε(t(a)|x,A) ≤ t 1

Pε(A|x)

3tFF (A)2

C2tFF (A)

Proof. De�ne tτ (a) to be tτ (a) if it is �nite, zero otherwise, and observe that for a ∈ A we have
tτ (a) = tτ (a). Hence we may write

Eε(t(a)|x,A) =

t−1∑
τ=0

Eε(tτ (a)|x,A)

=

t−1∑
τ=0

Eε(tτ (a)|x,A)Pε(A|x)

Pε(A|x)

≤ 1

Pε(A|x)

t−1∑
τ=0

Eε(tτ (a)|x).

Moreover Eε(tτ (a)|x) ≤ maxy∈Bτ Eε(tτ (a)|y) as either tτ (a) is zero or a hits some y ∈ Bτ before
hitting Bτ+1 by de�nition. The desired bound now follows from Lemma 12 and the summation
formula Lemma 11.
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Web Appendix 2: Expected Passage Time Bounds

Let Vt a standard Weiner process with 0 drift and instantaneous variance 1 that starts at 0.

Now let T be the �rst time that Vt leaves the region [−A,+A]. As usualΦ is the standard normal.

First we prove

Lemma 13. ET ≥ 1
2[Φ−1(1/8)]2

A2

Proof. Let τ+ be the �rst passage time for A > 0. We �rst establish a standard result: Pr(Vt >
A) = Pr(Vt > A & τ+ < t) = (1/2)Pr(τ+ < t). The �rst equality follows from the fact that if
Vt > A then certainly τ+ < t. The second follows from the re�ection principle: starting at Vτ+ = A
there is an equal probability of 1/2 that Vt > A and Vt < A hence if τ+ < t the probability that
Vt > A also is half the probability that τ+ < t.

Our goal is to establish a lower bound on the expectation of T . Let τ− be the �rst passage time
of −A. First we observe that

Pr(τ+ < t) = Pr(τ+ < t & τ− > t) + Pr(τ+ < t& τ+ < τ− < t) + Pr(τ+ < t & τ− < τ+).

Using the re�ection principle we have

Pr(τ+ < t& τ− < τ+) = Pr(τ− < t& τ+ < τ−) = Pr(τ+ < t& τ+ < τ− < t)

so that

Pr(τ+ < t) = Pr(τ+ < t & τ− > t) + 2Pr(τ+ < t& τ+ < τ− < t)

≥ Pr(τ+ < t & τ− > t) + Pr(τ+ < t& τ+ < τ− < t)

Moreover

Pr(T < t) = 2 Pr(τ+ < t & τ− > t) + 2Pr(τ+ < t& τ+ < τ− < t)

≤ 2 Pr(τ+ < t) = 4Pr(Vt > A) = 4Φ(−A/
√
t)

Finally ET ≥ t(1 − Pr(T < t)) ≥ t(1 − 4Φ(−A/
√
t)) for all t and in particular for t =

A2/
[
Φ−1(1/8)

]2
which gives ET ≥ 1

2[Φ−1(1/8)]2
A2.

Now we consider a random walk with probability β of moving up or down by one and passage

time K to ±θL.

Theorem 17. The expected hitting time is bounded below by

Eκ ≥ (θ/(2β))2

6 [Φ−1(1/8)]2
L2

Proof. Let Lk be the random walk and consider the sums SL(t) =
∑t/L2

k=1 (Lk − Lk−1)/(2βL) as
L → ∞ converges weakly to a Weiner process with instantaneous variance 1. The random walk
passes ±θL when SL(t) passes ±θ/(2β). Consider the T truncated hitting time T̃ , we have

EST ≥ EST̃ ≥ EWT − |EWT − EW T̃ | − |EW T̃ − EST̃ |.

45



where the �nal inequality is just the triangle inequality. However limL→∞EST̃ = EW T̃ , limT→∞EW T̃ =
EWT. So for all su�ciently large L, T we can make |EWT − EW T̃ |, |EW T̃ − EST̃ | both less than
or equal to 1/3rd the bound in Lemma 13 giving the bound

EST ≥ (1− 1

3
− 1

3
)

(θ/(2β))2

2 [Φ−1(1/8)]
.

Finally observe that the number of periods corresponding to T is L2T .

Web Appendix 3: Length of the Fall, Rise and Warring States

Here we prove

Proposition 3. [Proposition 2 in the text] For any K there exists an L such that for all L ≥ L
there exists a ε such that for all ε ≤ ε the expected length of the warring states period exceeds that
of either the fall or rise by K periods.

Proof. First the fall. From Web Appendix 1 we see that the waypoints are where the hegemon loses
a unit of land to opponents that consist entirely of a single society of zealots. Hence there are no
more than θL waypoints. The time to failure is 1 since the hegemon can gain a unit of land with
zero resistance and game over, and the least length of a least resistance path from the state after a
waypoint to the next waypoint is 2: one transition to replace the society that initially gained the
land with the zealots, and one transition for the zealots to take a unit of land from the hegemon.
Hence from theorem 14 we have the bound

Eε(t(a)|x,A) ≤ θLD3/C6.

Turning to the rise, �x x such that a would be hegemon j has enough land θ0L to resist an
opponent consisting entirely of zealots. Let rz be that resistance. By Theorem 15 we have the
bound Pε(A|x) ≥ 1 − 2G(txBW )εrz . Moreover the sets Bτ such that the hegemon has θ0L + τ
units of land form a Liapuno� sequence. Notice that for this sequence tFF (A) = 1 since there is
always zero resistance to the hegemon gaining a single unit of land, and along a least resistance
path starting at x he can never lose any land. Hence by Theorem 16 we also have the bound

Eε(t(a)|x,A) ≤ (1− θ0)L
1

Pε(A|x)

3

C2

≤ (1− θ0)L
1

1− 2G(txBW )εrz
3

C2

during the rise.
Recall that at some point during the warring states period there is a society with Ljτ units of

land that follows a random walk with β chance of increasing by one or decreasing by one at least
until either Ljτ ≥ θL or Ljτ ≤ (1 − θ)L. From Theorem 17 we have the expected passage time
bound

Eεκ ≥
(θ/(2β))2

6 [Φ−1(1/8)]2
L2.

Hence for L su�ciently large the expected amount of time in the warring states is 3K larger than
an upper bound θLD3/C6 on the expected amount of time during a least resistance path during
the fall and larger than (1− θ0)L3/C2 which is not quite an upper bound on the expected amount
of time during the rise. This is not quite the end of the story, since it is the expected amount of
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time of all paths during the rise or the fall that matters, and because we must account for dividing
by the probability of the rise. However, the expected length of all non-least-resistance paths is
bounded above by Theorem 13 as is G(txBW ) and while that bound increases quite rapidly with L
it is also weighted according to Theorem 12 by a probability that goes to zero with ε. Hence once
we �x L we can choose a small enough ε that the expected length of all paths (during the rise or
fall) is at most K larger than that of the length of least resistance paths - that is of total length
at most 2K. Hence the expected amount of time in the warring states period is at least K larger
than during the rise or fall.

Web Appendix 4: Ergodic Probabilities and Circuits

We are given a �nite set of nodes Ωk and for ψ, φ ∈ Ωk a resistance function rk(ψ, φ). For any

ψ ∈ Ωk we de�ne the least resistance rk(ψ) = minφ∈Ωk\ψ r
k(ψ, φ). We are interested in trees T on

Ωk. For any such tree and any ψ let T (ψ) denote the unique predecessor of ψ on the tree (which

is null for the unique root). Note that we follow the standard game theory terminology that the

predecessor is closer to the root - in contrast to Young who follows the logic of the Markov process

in imagining that the node closer to the root is the successor node. The resistance of the tree T is

de�ned to be rk(T ) =
∑

ψ∈Ωk r
k(ψ, T (ψ)) where rk(ψ, ∅) ≡ 0.

Our goal is to characterize least resistance trees by showing how they are constructed out of

groups of nodes that we call circuits. As in the text, Ωk+1
x ⊆ Ωk is a circuit if for each pair

ψ1, ψy ∈ Ωk+1
x there is a path ψ1, ψ2, . . . , ψn ∈ Ωk+1

x with ψn = ψy such that for τ = 2, 3, . . . n we

have rk(ψτ−1, ψτ ) = rk(ψτ−1), that is, there is a path from ψ1 to ψy within the circuit such that

each connection has least resistance.

De�nition 10 (Consolidation). A circuit Ωk+1
x is consolidated within the tree T if there is a φ ∈

Ωk+1
x that precedes all other ψ ∈ Ωk+1

x , and for these other ψ 6= φ we have T (ψ) ∈ Ωk+1
x and

rk(ψ, T (ψ)) = rk(ψ).

In other words, in the consolidated tree the circuit Ωk+1
x forms a subtree with root φ, and each

connection within the circuit has least resistance. We refer to φ as the top of the circuit.

Intuitively if we think of the circuit as a circle of least resistance connections then we will break

that circle after φ to make a subtree and use φ to connect this subtree to the the rest of the tree.

Breaking the connection saves at least rk(φ), while making the new connection costs rk(φ, T (φ)),

hence we de�ne the modi�ed resistance from φ to ψ as Rk(φ, ψ) = rk(φ, ψ)− rk(φ).

In the next lemma we consolidate a circuit within a tree by breaking it after the node that

minimizes modi�ed resistance. By so doing, the resistance of the tree cannot increase.

Lemma 14. Suppose that T on Ωk has root ψ and that Ωk+1
x is a circuit on Ωk. Then there is

a tree T ′ with root ψ such that rk(T ′) ≤ rk(T ) and Ωk+1
x is consolidated in T ′ with the additional

properties that (1) if φ′ /∈ Ωk+1
x then T ′(φ′) = T (φ′) and (2) if φ is the top of Ωk+1

x in T ′ then
Rk(φ, T ′(φ)) = min{Rk(φ′, T ′(φ)) | φ′ ∈ Ωk+1

x }.

Proof. Let T have root ψ and let φ∗ ∈ Ωk+1
x be such that the unique path from φ∗ to the root ψ

contains no element of Ωk+1
x . If φ∗ = ψ take φ = φ∗. Otherwise choose as top a φ ∈ Ωk+1

x such that
rk(φ, T (φ∗))− rk(φ) = min{rk(φ′, T (φ∗))− rk(φ′) | φ′ ∈ Ωk+1

x }. We now use tree surgery to create
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a sequence of new trees ending in the desired tree T ′. As we proceed we never cut a connection
originating in any set other than Ωk+1

x so that property (1) will be satis�ed.
At each step Ωk+1

x will be divided into two sets Φφ,Φ∼φ = Ωk+1
x \Φφ. The �rst set Φφ will

contain at least φ and consist of those elements of Ωk+1
x that are already consolidated with φ at the

top, and such that no element of Φ∼φ appears between φ and the root. We will proceed constructing
new trees by moving one element from Φ∼φ to Φφ at a time making sure that all properties are
preserved.

We start the process. If φ = ψ or φ = φ∗ we do nothing. Otherwise cut φ from the tree and paste
it to T (φ∗). Observe that this increased the resistance of the tree by at most rk(φ, T (φ∗))− rk(φ).
Let Φφ be the maximal set consolidated with φ at the top: this set now contains at least φ.

We now continue the process until Φ∼φ is empty. Pick an element φ′ ∈ Φ∼φ. Because Ωk+1
x is

a circuit there is a least resistance path in Ωk+1
x from φ′ to φ. Let φτ be the last element in Φ∼φ

that is reached on this path. Then cut φτ from the tree and paste it to φτ+1. Notice that this
cannot increase the resistance of the tree since the connection from φτ to φτ+1 has least resistance.
Moreover, if φ 6= φ∗ then at some step φτ = φ∗ and at this step the resistance of the tree is decreased
by exactly rk(φ∗, T (φ∗)) − rk(φ∗). Once again let Φφ be the maximal set consolidated with φ at
the top: this set now contains at least one more element φτ .

When we are �nished we end up with the new tree T ′. Now observe that either φ = φ∗ or
the resistance over the original tree was increased only in the �rst step, by at most rk(φ, T (φ∗))−
rk(φ), and it was decreased by rk(φ∗, T (φ∗)) − rk(φ∗) when we pasted φ∗. By the choice of φ we
have rk(φ, T (φ∗)) − rk(φ) ≤ rk(φ∗, T (φ∗)) − rk(φ∗), and in all other cases the resistance did not
increase. Therefore rk(T ′) ≤ rk(T ). Since by construction T ′(φ) = T (φ∗) we have Rk(φ, T ′(φ)) =
min{Rk(φ′, T ′(φ)) | φ′ ∈ Ωk+1

x }.

We now focus on least resistance trees. Let T (ψ) be the set of trees with root ψ, rkψ =

minT∈T (ψ) r
k(T ) be the least resistance of any tree with root ψ and T k

ψ = arg minT∈T (ψ) r
k(T )

be the set of least resistance trees with root ψ. First we prove a simple relation between least

resistance of trees and of their roots:

Lemma 15. If ψ, φ are in the same circuit on Ωk then rkψ − rkφ = rk(φ)− rk(ψ).

Proof. Suppose ψ, φ ∈ Ωk+1
x where Ωk+1

x is a circuit. Then we can choose a path φ1, . . . , φν , . . . , φn ∈
Ωk+1
x with φ1 = ψ, φν = φ, φn = ψ such that for τ = 2, 3, . . . n we have rk(φτ−1, φτ ) = rk(φτ−1).

Choose T1 ∈ Tφ1 , and supposing that Tτ−1 has root φτ−1 de�ne Tτ as the tree in which we
cut φτ from Tτ−1, make it the root of Tτ and paste the root of Tτ−1 to φτ . This tree has root
φτ and resistance rk(Tτ ) ≤ rk(Tτ−1) + rk(φτ−1, φτ ) − rk(φτ ) = rk(Tτ−1) + rk(φτ−1) − rk(φτ ).
Hence rk(Tτ ) ≤ rk(T1) + rk(φ1) − rk(φτ ). Since φn = φ1, we conclude that r

k(Tn) ≤ rk(T1) and
since T1 had least resistance, it must be that rk(Tn) = rk(T1). Hence all the inequalities must
hold with equality, that is, rk(Tτ ) = rk(T1) + rk(φ1) − rk(φτ ). Choosing τ = ν we then have
rk(Tτ ) = rkψ + rk(ψ) − rk(φ), whence rkφ ≤ rkψ + rk(ψ) − rk(φ); but by interchanging φ and ψ and

rearranging we get rkφ ≥ rkψ + rk(ψ)− rk(φ); this gives the conclusion.

We now assume that for ε > 0 Pε is ergodic so that there is a unique ergodic probability

distribution µε on the state space Z. Let TS(x) denote all trees over a set S with root x and set

Mε(x) =
∑

T∈TZ(x)

∏
z∈Z

Pε(T (z)|z).
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Following Young (1993) and Friedlin and Wentzell (2012)we observe that

µε(x) =
Mε(x)∑
z∈Z Mε(z)

.

Let the resistance r(x, y) on Z be the ordinary resistance. Let rx be the least resistance of trees on

Z with root x. Observing from Cayley's formula that NN−2 is the number of trees with the same

root over N nodes it follows that

Theorem 18. The ratio of ergodic probabilities satis�es the bounds

CN

NN−2DN
εrx−ry ≤ µε(x)

µε(y)
≤ NN−2DN

CN
εrx−ry .

Proof. We may rearrange the Friedlin and Wentzell (2012) result to get

µε(x)
∑
z∈Z

Mε(z) = Mε(x)

so that
µε(x)

µε(y)
=

Mε(x)

Mε(y)

Recall the bounds Cεr(x,z) ≤ Pε(z|x) ≤ Dεr(x,z) on transition probabilities. Hence we have

CNεrx ≤
∑

T∈TZ(x)

CN
∏
x∈Z

εr(x,z) ≤Mε(x) ≤
∑

T∈TZ(x)

DN
∏
x∈Z

εr(x,z) ≤ DNεrxNN−2.

Dividing by Mε(y) and using the corresponding bounds then gives the result.

These bounds are in terms of resistances of least resistance trees. The next goal is to translate

them in terms of appropriate resistances of least resistance paths.

Applying Lemma 15 give as immediate corollary the following result, where recall that r0(Ωx)

is de�ned in Section 6.3 in terms of direct routes:

Theorem. [Theorem 9 in text] If the recurrent communicating classes Ωx and Ωy are in the same
circuit on Ω0 ≡ Ω then

CN

NN−2DN
εr

0(Ωy)−r0(Ωx) ≤ µε(x)

µε(y)
≤ NN−2DN

CN
εr

0(Ωy)−r0(Ωx).

This goes one step in the desired direction but applies only to elements of a given circuit. In

general, we can �nd the least resistance of trees in Z by �nding the least resistance of trees in Ω.

Recall that r0
Ωx

is the least resistance of trees on Ω with root Ωx, and rx is the least resistance of

trees on Z with root x. We next show that they are equal:

Lemma 16. If x ∈ Ωx ∈ Ω then rx = r0
Ωx
.

Proof. Young (1993) proves this lemma (Lemma 2 in his Appendix) for the case where the resis-
tance, call it r∗(Ωx,Ωy), is the least resistance of any path from Ωx to Ωy - that is, he allows the
path to pass through recurrent communicating classes Ωz which are neither Ωx nor Ωz (Ellison
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(2000) does the same in his de�nition of the modi�ed co-radius). Our resistance is in general larger
than Young's since we do not allow paths to pass through these other recurrent communicating
classes. However, his proof requires only minor modi�cation to yield the stronger result. Young
�rst shows that the least resistance r∗Ωx of any tree on Ω with root Ωx is greater than or equal to
rx. Since r

0
Ωx
≥ r∗Ωx we have the immediate implication that r0

Ωx
≥ rx.

The second part of Young's proof shows that r∗Ωx ≤ rx. Following Young we show how to
transform a least resistance tree T ∈ Tx on Z into a tree T ′ ∈ T (Ωx) over Ω such that r0(T ′) ≤
r0(T ). The easiest way to do this would be by simply taking one point from each irreducible class
and using the resistance between those states to get a tree over Ω. However, this does not work
because there can be double-counting if paths in T join between irreducible classes. Young shows
how to avoid double-counting by reorganizing the tree. We can use his construction if we can avoid
having or creating paths between irreducible classes that contain elements of a third irreducible
class. This is the case if we start by choosing the �right� least resistance tree and the �right� point
from each irreducible class before we apply Young's method.

Observe that each φ ∈ Ω is a circuit, so by consolidating where needed as from Lemma 14 we
can assume that each φ ∈ Ω is already consolidated in T . The �rst step of Young's proof is to
choose one point y′ ∈ φ for each φ ∈ Ω - these are what Young calls special vertices. We do this
by choosing for each φ ∈ Ω, the top of φ in the tree. Observe that because the tree is consolidated
the path from any special vertex to the next special vertex y in the direction of the root cannot
contain elements of any irreducible class other than Ωy.

Now apply Young's construction to eliminate junctions (a junction in a tree T is any vertex
y with at least two incoming T -edges). Observe that when Young cuts a subtree T ∗ from a
vertex y that is not in a recurrent communicating class this preserves the consolidated structure,
because those φ′ ∈ Ω that lie further from the root than y are necessarily entirely contained in T ∗.
Consequently we never need to cut junctions at y that are in recurrent communicating classes, for
T is consolidated and therefore the path from y to the top of the circuit has zero resistance and no
double-counting is involved.

Finally, when Young pastes cuts T ∗ from the junction y back into the tree T , he implicitly
introduces new paths a = (y, z1, . . . , zt−1, z) from y to a special vertex z with r(a) = 0. However,
these implicit paths cannot contain elements of any recurrent communicating class Ωy other than
Ωz. If they did the path could not have zero resistance since there is no path from Ωy 6= Ωz to Ωz

that has zero resistance. Hence at the end of Young's procedure we �nd that the paths along which
resistance is computed - those from one special vertex to the next special vertex in the direction of
the root - do not contain a vertex from a third recurrent communicating class. By this procedure
we then obtain a tree in T (Ωx) with resistance not larger than T , whence r0

Ωx
≤ rx.

Our next goal is to recursively compute rk and by doing so �nd bounds on µε(x)/µε(y) - without

the restriction that Ωx and Ωy be in the same circuit.

We take Ω0 = Ω, so an element ψ1 ∈ Ω1 will be a circuit of recurrent communicating classes

and for ψ, φ ∈ Ω0 the resistance r0(ψ, φ) is just the least resistance along a direct route. We

recursively de�ne on Ωk−1 the modi�ed resistance function Rk−1(ψk−1, φk−1) = rk−1(ψk−1, φk−1)−
rk−1(ψk−1), and we de�ne a resistance function on Ωk by the least modi�ed resistance: rk(ψk, φk) =

minψk−1∈ψk,φk−1∈φk R
k−1(ψk−1, φk−1). Then the following formula holds, where notice that the term∑

φk−1∈Ωk−1 rk−1(φk−1) is a constant independent of the tree in question.

Lemma 17. If ψk−1 ∈ ψk then rk−1
ψk−1 = rk

ψk
− rk−1(ψk−1) +

∑
φk−1∈Ωk−1 rk−1(φk−1).
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Proof. Suppose we have a tree T k−1 on Ωk−1 that is consolidated with respect to all the circuits in
Ωk, and let ψk−1 be its root. The fact that T k−1 is consolidated means that the top of each circuit
has a predecessor which belongs to a di�erent circuit. For ψk ∈ Ωk denote by Γ(T k−1, ψk) ∈ Ωk−1

the top of circuit ψk in T k−1. Then if T k−1(Γ(T k−1, ψk)) = φk−1 ∈ φk 6= ψk (where if φk−1 is null
we set φk = ∅ as well), we may de�ne T k(ψk) = φk. In this way we de�ne a tree on Ωk. We have
rk−1(T k−1) =

∑
φk−1∈Ωk−1 rk−1(φk−1, T k−1(φk−1)). However, since the tree is consolidated, for any

φk−1 not at the top of the corresponding circuit φk we have rk−1(φk−1, T k−1(φk−1)) = rk−1(φk−1),
hence we may write

rk−1(T k−1) =
∑

φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ψk

ρk−1(Γ(T k−1, φk), T k−1(Γ(T k−1, φk))).

Now start with a least resistance tree T k−1 ∈ Tψk−1 . By Lemma 14 we may consolidate this

tree T k−1 with respect to all the circuits in Ωk to get another least resistance tree T̃ k−1 ∈ Tψk−1 .

By the previous computation and the de�nition of rk we see that

rk−1
ψk−1 = rk−1(T̃ k−1) =

∑
φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ψk

ρk−1(Γ(T k−1, φk), T k−1(Γ(T k−1, φk)))

≥
∑

φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ψk

rk(φk, T k(φk))

≥
∑

φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) + rkψk .

Next start with a least resistance tree T k ∈ TΩkx
, where ψk−1 ∈ ψk, and construct a tree on

Ωk−1 as follows. For the root φk = ψk de�ne φk−1 = ψk−1. For given non-root φk and T k(φk) there
are points φk−1 ∈ φk and φ̃k−1 ∈ T k(φk) such that rk(φk, T k(φk)) = r(φk−1, φ̃k−1) − r(φk−1). For
each φk consolidate the tree over φk with root φk−1 to get a tree T [φk, φk−1]. Now de�ne a tree on
Ωk−1 by putting together these subtrees as follows: if φ̂k−1 is in T [φk, φk−1] but is not the root, set
T k−1(φ̂k−1) = T [φk, φk−1](φ̂k−1). For the root φk−1 set T k−1(φ̂k−1) = φ̃k−1. This is clearly a tree
with root ψk−1, and we see that the resistance is

rk−1
ψk−1 ≤ rk−1(T k−1) =

∑
φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ωk

rk(φk, T k(φk))

=
∑

φk−1∈Ωk−1

rk−1(φk−1)− rk−1(ψk−1) + rkψk .

Putting together the two inequalities gives the desired result.

Lemma 18. If Ωk has at least two elements it has at least one non-trivial circuit.

Proof. Starting at an arbitrary point ψk ∈ Ωk choose a path of least resistance. Since Ωk is �nite,
this must eventually have a loop, and that loop is necessarily a circuit.

We can now recursively de�ne a class of reverse �ltrations with resistances over the set Ω0 = Ω

of recurrent communicating classes for P0; assume Ω has NΩ elements, with NΩ ≥ 2. Starting with

Ωk−1 we observe that there is at least one non-trivial circuit, and that every singleton element is

trivially a circuit. Hence we can form a non-trivial partition of Ωk−1 into circuits, and denote this
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partition Ωk. All the resistances are de�ned as before. Note that since each partition is non-trivial,

this construction has at most k ≤ NΩ layers before the partition has a single element and the

construction stops.

The modi�ed radius of x ∈ Ωx of order k is de�ned by

R
k
(x) =

k∑
κ=0

rκ(Ωκ
x)

where Ω0
x = Ωx and for each κ > 0 the element Ωκ

x 3 Ωκ−1
x . Then

Theorem. [Theorem 10 in the text] Let k be such that Ωk
x = Ωk

y; then rx−ry = R
k−1

(y)−Rk−1
(x)

and consequently

CN

NN−2DN
εR

k−1
(y)−Rk−1

(x) ≤ µε(x)

µε(y)
≤ NN−2DN

CN
εR

k−1
(y)−Rk−1

(x).

Proof. From Lemma 16 we know that rx− ry = r0
ψ0(x)− r

0
ψ0(y). Applying Lemma 17 iteratively, we

see that if ψk−1 ∈ ψk then

r0
ψ0 = rkΩkx

+
k−1∑
κ=0

 ∑
φκ∈Ωκ

rκ(φκ)

− k−1∑
κ=0

rκ(ψκ)

from which

r0
ψ0(x) − r

0
ψ0(y) = −

k−1∑
κ=0

rκ(ψκ(x)) +
k−1∑
κ=0

rκ(ψκ(y)) = R
k−1

(y)−Rk−1
(x).
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