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1. Introduction

In two influential papers Kandori, Mailath and Rob [1993] and Young [1993]

showed how introducing random innovations (mutations) into a model of evolutionary

adjustment enables predictions about which of several strict Nash equilibria will occur in

the very long run. Key to this result is the possibility that strategies that perform poorly

may be introduced into the population in sufficient numbers through innovation that they

begin to perform well. Here we examine imitation as an alternative propagation

mechanism. A striking fact is that if imitation is much more likely than innovation, it is

significantly easier to find the long-run equilibrium. First, the long-run limit contains

only pure strategies. Second, calculations can be made by comparing pairs of pure

strategies to see how well they do against one another. One useful result is that it is

sufficient that a strategy profile beat all others in pairwise contests. As we illustrate

through examples, this is implied by, but more likely to be satisfied than, the criterion of

½-dominance proposed by Morris, Rob and Shin [1993].

This work stems from our admiration of the existing theory, a desire to apply it to

interesting games, and our dissatisfaction with innovation as a propagation mechanism.

To us, the theory of evolution with persistent randomness is a theory of the propagation

of ideas through a population. Key to analyzing long-run dynamics is the possibility that

bad ideas may spread, changing which ideas are good and which are bad. To think of this

propagation taking place through random innovations seems highly unsatisfactory. It is

hard to think of any significant changes in institutions that have occurred in human

history because large numbers of people simply happen to have tried the same thing at

more or less the same time. Rather, we believe that ideas are spread through imitation.

One example is the change of institutions through civil disobedience, as occurred, for

example, in East Germany. Initially a small number of people protested the existing

government. It seems likely that rational calculation would show that this was a bad idea

– that the probability of being punished severely was substantial. But others imitated, and

once the idea spread sufficiently widely, the probability of punishment dropped, and civil

disobedience became a best response.

In addition to the work mentioned above, there are several other papers that have

a connection to our results. Bergin and Lipman [1994] show that the relative probabilities
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of different types of noise can make an enormous difference in long-run equilibrium; here

we explore on particular theory of how those relative probabilities are determined. Van

Damme and Weibull [1998] study a model in which it is costly to reduce errors, and

show that the basic 2x2 results on risk dominance go through. By way of contrast, our

focus is on larger more complex games. Our result about winning pairwise contests is

connected to a result of Kandori and Rob [1993]. We explain this connection in

conjunction with introducing our own result about winning pairwise contests.

2. The Model

We study a symmetric normal form game with a single population of players.

There is a finite number 3  of pure strategies, and we write S 3�  for a typical pure

strategy. Notice that we use the same symbol for the number of pure strategies and the set

of pure strategies. Mixed strategies are vectors of probabilities denoted by T � 4 . A

mixed strategy is called pure if it puts unit weight on a single pure strategy; we denote

the mixed strategy corresponding to the pure strategy S  also by S . The utility of a player

depends on his own pure strategy and the mixed strategy played by the population. It is

written � � 	U S T .  We assume that U  is continuous in T . A prototypical example is a

game in which players from different populations are randomly matched to play

particular player roles; we discuss this along with other examples below.

There are M  players in the population, each of whom plays a pure strategy. At

time T  we denote the distribution of strategies in the population by 
T
T � 4 . Initially at

time �T �  there is a given initial condition 
�

T . In subsequent periods 
T
T  is determined

from 
�T

T
�

 according to the following “imitative” process.

1) One player I  is chosen at random. Only this player changes his strategy.

2) With probability #F  player I  chooses from 3  randomly using the probabilities

�T
T
�

. This is called imitation: strategies are chosen in proportion to how frequently

they were played in the population in the previous period.

3) With probability NF  player I  chooses from 3  randomly with equal probabilities of

��3  of choosing each strategy. This is called innovation: strategies are picked

regardless of how widely used they are, or how successful they are.

4) With probability � N#F F� � player I  chooses randomly with equal probabilities

among the set of strategies that solve the problem used by the most players
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This is called a relative best response: it is the best response among those strategies that

are actually used by the particular population.

Observe that this process gives rise to a Markov process -  on the state space
M4 � 4  consisting of all mixed strategies consistent with the grid induced by each

player playing a pure strategy. Note that all pure strategies are in M4 . The process -  is

positively recurrent, and so has a unique invariant distribution FN . Our goal is to

characterize 
�

LIM F

F
N N

l

w .

Our main assumption is that imitation is much more likely than innovation.

Specifically

Unlikely Innovation: N M� .

In particular this means that as �F l  it is far more likely that every player in the

population will change strategy by imitation than even a single player will innovate.

By way of contrast standard evolutionary models of persistent randomness assume

Standard Model: �# � .

Actually the standard model does not use relative best response for players who are not

innovating (often called mutating), but typically some variation on the best response

dynamic. As we shall see below, this does not make that much difference.

 Discussion and Examples

We should first indicate the strong connection between the case of unlikely

imitation �# � , and the standard case of innovation (or mutation) and a best-response

like dynamic. In matching games, generally speaking, the basins of steady states are

determined by fractions of the population. Consequently as the population size goes to

infinity, the difference in the number of innovations needed to move from one steady

state to another, versus the number required to move back, typically goes to infinity. It is

this difference that determines which are the stochastically steady states. On the other

hand, while the relative best-response dynamic is different than the best-response

dynamic, it requires only a number of innovations equal to the total number of strategies

in the game to make sure that every strategy is actually in use. In this interior case, the

best-response and relative best-response dynamics are identical. Since this is a fixed
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number of innovations, when the population size is large enough, it is swamped by the

difference in innovations required to move between steady states, and the calculations

made for stochastic stability in the best-response case coincide with those in the relative

best-response case. As a result, except in knife-edge cases, we do not expect unlikely

imitation to yield different results than Kandori, Mailath and Rob [1993], or Young

[1993], or subsequent research using the standard model.

We should also note that the assumption of a single-population is significant. In

the existing literature, this has been the primary focus of research, although Hahn [1995]

does have some results in the multiple population case. Here the single-population

assumption not only means that all players are a priori identical, but that there is only one

population within which ideas spread.  The case in which ideas are more likely to spread

within particular exogenously or endogenously identified populations of “people like me”

is of great interest. The model of Friedman [1998] in which players are sometimes

matched with opponents from the same population and sometimes with opponents from a

different population provides a natural setting for this type of study, but it is beyond the

scope of this paper.

A prototypical example of the type of environment we are studying is a matching

game. A matching game is defined by a utility function � �� � � � 	J *U A A A% K  where

���� �J *� K  are player roles, and JA !� , a finite set, is called an action. Players are

randomly assigned to different roles. Strategies are maps from roles to actions

� [���� � ]S * !lK . The function � � 	U S T  is computed by calculating the probability of

playing different roles, and meeting opponents playing different roles.

� �
� \

� � 	 ��� 	 � ��	� ��	� � � 		 � 	* J

* J * K

K JJ S 3 S S
U S * U S S S * ST T

v� � �
� � � �

% %

% % % % %K

We make the fairly standard, and in a large population relatively innocuous,

simplification that a player does not take into account the fact that he cannot meet

himself. Notice that only in the case of two player games is � � 	U S T  linear in T , which is

the most familiar case. Also of interest are anonymous matching games which are

matching games in which strategies are restricted to be independent of the player role, so

that 3 !� .
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3. Basic Results

We begin by establishing some basic results. First, we examine the relative best-

response dynamic in the unperturbed case �F � . This dynamic is similar in some

respects to the replicator: for example, all pure profiles are steady states, but points that

are not Nash equilibria are not locally stable. Second, we establish two basic results for

the perturbed case �F � . When imitation is much more likely than innovation, mixed

strategies should be less stable than pure strategies. A mixed strategy can evolve into a

pure strategy purely through imitation, while a pure strategy cannot evolve at all without

at least one innovation. We confirm this intuition by showing that the limit invariant

distribution N  places weight only on pure profiles in M4 . We then further study the

connection between the limit invariant distribution N  and Nash equilibrium, showing

that if the support of N  is a singleton, it must be a Nash equilibrium.

Let �N  be an irreducible invariant distribution of the Markov process in which

�F � . Let X  be the set of mixed strategies in the state space M4  that this invariant

distribution gives positive weight to. We call such an X  an ergodic set. Let 8  be the set

of all such X .   Note that this is a set of sets. Let � 	3 T  denote the set of pure strategies

used with positive probability in T . First we establish some basic facts about 8 .

Lemma 3.1: The sets X  are disjoint. Each set consisting of a singleton pure profile

[ ]S � 8 . If � �T T X� � 8  then � 	 � �	3 3T T� .

Proof:  When �F �  we have the relative best-response dynamic in which in each player

one player switches with equal probability to one of the relative best-responses to the

current state. The sets X  are by definition minimal invariant sets under the relative best-

response dynamic. That these sets are disjoint is immediate from the definition. Pure

profiles are absorbing since no strategy can be used unless it is already in use. This means

that every set X  consisting of a single pure strategy is in 8 . To see that have

� 	 � �	3 3T T� , observe that the relative best-response dynamic cannot ever increase the

set of strategies in use. If there is a point � 	� � �	S 3 S 3T T� �  then the probability that

the best-response dynamic goes from T  to �T  is zero, which is inconsistent with the two

strategies lying in the same ergodic set.

æ
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The third part of the Lemma means that for each X � 8  we may assign a unique

set of pure strategies � 	3 X  corresponding to � 	�3 T T X� .

The relative best-response dynamic is similar to the better-known replicator

dynamic in several respects. Like the replicator dynamic, the relative best-response

dynamic is absorbed by pure strategies and so has many steady states. However, as is the

case with the replicator, this is offset somewhat by the fact that points that do not

correspond to Nash equilibria are locally unstable. By locally unstable, we mean that

there is a neighborhood of the state and a change in strategy by a single player that leads

to a positive probability of exiting that neighborhood.

Theorem 3.2: Suppose T  is such that for some S%  with � 	 �ST �%  we have

� � 	 � � 	U S U ST T� % . Then for all sufficiently large N , if T X�  it is locally unstable.

Proof: Since U  is continuous, there is a neighborhood of T  in which � � 	 � � 	U S U ST T� % .

Also, since � 	 �ST �%  we may assume that this is also the case in this neighborhood. For

N  sufficiently large the neighborhood must contain points in which one player is playing

S . At each such point, the relative best-response assigns positive probability to the

number of players playing S%  decreasing by one, so there is positive probability of exiting

the neighborhood.

æ

Turning to the case �F � , from a theorem of Young [1993] N  may be described

as a probability distribution over 8 . Our intuition that pure strategies are more important

in a setting of innovation is confirmed by our first theorem.

Theorem 3.3: With unlikely innovation the limit invariant distribution N  puts weight

only on the sets X � 8  that consist of a single pure strategy .3

To prove this theorem, and our additional results, we will use the characterization

of N  given by Young [1993].4 Let U  be a tree whose nodes are the set 8 . We denote by

� 	U X  the unique predecessor of X . An X -tree is a tree whose root is X . For any two

points �X X � 8%  we define the resistance � � 	R X X%  as follows. First, a path from X  to X%

                                                
3 A similar result has been shown for imitation in the form of genetic algorithms. See Dawid [1999]
Theorem 4.2.1, for example.
4 Although the standard convention in game theory is that a tree begins at the root, Young [1993] followed
the mathematical convention that it ends there. We have used the usual game-theoretic convention, so our
trees go the opposite direction of Young’s.
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is a sequence of points 
�

� � � 	 M

+
T T � 4K with 

�
T X� , 

+
T X� %  and 

�K
T
�

 reachable

from 
K
T  by a single player changing strategy. If the change from 

K
T  to 

�K
T
�

 is a

relative best-response, the resistance of 
K
T  is 0; if the change is an imitation the

resistance is 1; if the change is an innovation the resistance is M . The resistance of a

path is the sum of the resistance of each point in the sequence. The resistance � � 	R X X%  is

the least resistance of any path from X  to X% . The resistance � 	R U  of the X -tree U  is

the sum over non-root nodes of � � � 		R X U X% % . The resistance of X , � 	R X  is the least

resistance of any X -tree. The following Theorem is proven in Young [1993].

Young’s Theorem: � 	 �N X �  if and only if

� 	 MIN � 	R R
X

X X
�8

�
%

%

Remark: The set of X  for which � 	 �N X �  is called the stochastically stable set.

The basic tool for analyzing N  is tree surgery, by which we transform one tree

into another and compare the resistances of the two trees. Suppose that U  is an X -tree.

For any nodes X Xv%  we cut the X% -subtree separating the original tree into two trees;

one the X% -subtree and the other what is left over. This reduces the resistance by

� � � 		R X U X% % . If X)  is a node in either of the two trees, and eX  is the root of the other tree,

we may paste eX  to X)  by defining �e	U X X� ) . This tree has the root of the tree

containing X) . The paste operation increases the resistance by �e� 	R X X) , so the new tree

has resistance � 	 �e� 	 � � � 		R R RU X X X U X� �) % % . These operations can be used to characterize

classes of least resistance trees, by showing certain operation do not increase the

resistance. They can also be used as below in proof by contradiction, showing that certain

trees cannot be least resistance because it is possible to cut and paste in such a way that

the resistance is reduced.

Proof of Theorem 3.2: Suppose that � 	 �N X �  and that X  is not a singleton pure profile.

Let U  be a least resistance X -tree. Let SX �%  be a singleton pure strategy that is played

with positive probability by some T X� , that is, � 	S 3 X� . Cutting X%  and pasting the

root X to it. Since X%  is a singleton pure profile, it requires at least one innovation to go

anywhere, so cutting reduces the resistance by at least N . On the other hand, since

T X�  and � 	 �T X �% , we can go from X  to X%  by no more than M  imitations, pasting

the root to X%  increases the resistance by at most M . By the assumption of unlikely
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innovation, this implies that the new tree has strictly less resistance than the old

contradicting Young’s Theorem.

æ

4. Winning Pairwise Contests is Sufficient

We now establish our first main result: we show that if a pure strategy beats all

others in pairwise contests, then it is the unique stochastically stable state. We begin by

explaining what it means to win pairwise contests.

Definition 4.1: Suppose that �S S 3�% . For � �Xb b  define a family of mixed

strategies � 	XT  by � 	; = � � 	; = �X S X X S XT T� � �% .  If for all ���X p

� � � 		 � � � 		 �U S X U S XT T� �%

we say that S  beats S% .

Theorem 4.1: Suppose unlikely innovation, sufficiently large N  and that S beats all

S Sv% . Then �[ ]	 �SN � .

Proof: Suppose that there is other some X  with � 	 �N X � . By Theorem 3.2 e[ ]SX �

for some pure strategy eS . Let U  be the least resistance X -tree. Since it is not the root,

we may suppose that [ ]S  is attached to some X% , and consider cutting it and pasting the

root to it. It took at least one innovation plus, since S  beats any point in X% , more than

��M  imitations to get to X% , so the resistance is reduced by strictly more than

��N M� . However, since S  beats eS  we can get from e[ ]SX �  to [ ]S  with one

innovation and no more than ��M  imitations.  So resistance is strictly reduced

contradicting Young’s Theorem.

æ

The hypothesis, that when half or more of the population is playing S  against any

other pure profile, all players prefer to play S  is connected to the idea of ½-dominance

introduced by Morris, Rob and Shin [1993]. The concept of ½-dominance is that when

half or more of the population is playing S  against any other combination of strategies, it

is a best response to play S . The concept here is weaker in two respects: first, S  must

only beat pure profiles, not arbitrary combinations of strategies. Second, S  must win

only in the sense of being a relative best-response, it need not actually be a best-response;



9

a third strategy may actually do better than S , and this is significant as we will see in

examples below. On the other hand, ½-dominance clearly implies winning all pairwise

contests, so if there is a ½-dominant strategy, from Morris, Rob and Shin [1993] it is

stochastically stable with respect to the usual evolutionary dynamic, and it is also

stochastically stable when innovation is unlikely. Examples below will show clearly how

the usual notion of stochastic stability and the case of unlikely innovation diverge when

½-dominance fails, as well illustrating that in interesting games there can be a strategy

that wins all pairwise contests, even though there is no ½-dominant strategy.

Interestingly, Kandori and Rob [1993] study a class of games in which winning

all pairwise contests implies ½-dominance. They study single population matching games

satisfying the “total bandwagon property” meaning that the best response to any mixed

strategy is contained in the support of that mixed strategy. In particular, this means that

any pure profile is a Nash equilibrium. They make several other assumptions as well, but

as Fudenberg and Levine [1998] point out, these other assumptions are redundant. In a

game satisfying the “total bandwagon property” if S  wins all pairwise contests, it must

be actually be a best-response against every other pure strategy when ½ the population is

playing S . Since utility is linear in the population distribution of strategies, this means

that S  is actually best response against any combination of strategies when ½ the

population is playing S , so in fact S  is in fact ½-dominant.

Example 4.1: A Specialization Game

We now study a simple game with a unique equilibrium that is mixed. This

illustrates that unlikely innovation can be quite different than unlikely imitation. Consider

a simple � �q symmetric game of specialization: players may specialize in being hunters

or gatherers. If both choose the same specialization they consume only one product,

resulting in a utility of zero.  If they choose different specializations they trade, consume

both products, and get a utility of one. The payoff matrix is

Hunt Gather

Hunt 0,0 1,1

Gather 1,1 0,0
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We first assume that this is played as an anonymous matching game. This means the only

pure strategies are Hunt and Gather. From symmetry it is obvious both must have equal

weight (of ½) in the limit distribution with unlikely innovation. This is very different than

the case the standard case: the mixed equilibrium is the unique Nash equilibrium and it is

the unique point in 8  since players prefer to do the opposite of what everyone else is

doing. This means that it takes one innovation to get to the basin of the mixed

equilibrium, while it takes half the population to innovate to get out of the basin. Notice

that even with unlikely imitation, we continue to assume the relative best-response

dynamic, but this makes little difference as it takes only a single innovation to get out of

the non-Nash points in 8 .

We should digress briefly to discuss how mixed strategy Nash equilibria appear in

8 . If the mixed strategy is actually on the grid, then it will be in X , but this is unlikely.

If the mixed strategy is not on the grid, there are two possibilities depending on whether

it is stable in the relative best-response dynamic or not. If it is not, then there will not be

any point in 8  corresponding the mixed equilibrium. If it is stable, then there will be a

small cycle around the mixed equilibrium that will be in 8 – it is this we refer to as the

mixed strategy, although strictly speaking it is not.

The hunter-gatherer example reflects an aspect of unlikely innovation that should

be disturbing. There can be no stochastically stable mixed equilibria. In this example the

only Nash equilibrium is mixed, and the result is that the stochastically stable set is not

Nash and gives players less than the minmax as well. However, implicit in this

formulation is that mixing takes places by accident, through half of the population doing

one thing and half something else. It is fairly well known in the learning literature, for

example from Fudenberg and Kreps [1993], that this can be problematic. However, we

can also consider mixing through explicit randomization: that is, introduce a mixed

strategy as an explicit pure strategy. Suppose that we do this in the example: we add a

strategy of randomizing 50-50 between Hunt and Gather. It is apparent that if half the

population is following this strategy and half is playing a pure strategy (Hunt, for

example) it is better to mix. So the new mixing strategy wins all pairwise contests and is

the unique stochastically stable state.

Once we admit the possibility of explicit mixing, however, there is an even better

idea than can make its way into the population: using a correlating, or identifying device.
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That is, an anonymous game restricts players to actions that are independent of their

player roles (which might correspond, for example, to man and woman). The fact is that

while in the laboratory it is possible to create anonymous matching games, it is not

terribly likely to happen in the field. If the game is played as a non-anonymous matching

game, then there are two additional strategies of Hunt when player 1 and Gather when

player 2, and vice versa. Either of these strategies is Pareto efficient, and seem to reflect

historical patterns of specialization (men hunt, women gather).

Because neither of the two new strategies beats the other, it is useful to consider

an extension of the main theorem that gives a sufficient condition for a set of pure

strategies to be the only ones receiving positive weight in the limit distribution.

Definition 4.2: A set of pure strategies e3  beats the field if each strategy eS 3� beats

all eS 3�% .

The next theorem is specialization of Corollary C.2 in Appendix C.

Theorem 4.2: Suppose unlikely innovation, sufficiently large M  and that e3  beats the

field.  Then 
e

�[ ]	 �
S 3

SN
�

�� .

Proof:  See Appendix C, Lemma C.2  (i).

æ

Turning back to the example, we see that Hunt/Gather and Gather/Hunt are the

stochastically stable set; it is clear from symmetry that they are equally likely.

Comparison to the standard case is simplified if we break part of the symmetry by

supposing that Gather/Gather is safer, and therefore a little better than Hunt/Hunt, so that

the payoffs are

Hunt Gather

Hunt 0,0 1,1

Gather 1,1 1/4,1/4

This does not change the analysis in the case of unlikely innovation. However, in the

standard analysis ½ dominance fails. To see this observe that if half the population is

playing Hunter/Gather and half is playing Gather/Hunt the best response is Hunt/Hunt,

that is neither of the two. Despite this, we can use Ellison [1995]’s methods to show that
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Hunt/Gather and Gather/Hunt are the unique stochastically stable set in the standard

model. There are many mixed equilibria of this model, but adding one Hunt/Gather

innovation to one of these equilibria causes Hunt/Gather to become the best response and

vice versa, while it takes quite a few innovations to get out of Hunt/Gather or

Gather/Hunt.

5. A Gift Giving Game

We now consider a more extended example. The setting is a gift-giving game

introduced by Johnson, Levine and Pesendorfer [1999] to study the evolution of the

social norm of cooperation. In this game players live two periods in overlapping

generations. Young players are randomly matched against an equal number of old players

and must choose whether to give or withhold a gift from the old opponent. Old players

are passive and do not have an action. However, the behavior when young is reported on

by information systems so they may be reward or punished based on what they did when

they were young. This is a variation on the model of Kandori [1992], and following

Kandori, it is possible to prove a folk theorem for this model if there is “enough”

information about old players.

Specifically, we assume that it costs the young player 1 unit of utility for giving a

gift, and provides a benefit of �B �  to the older recipient. Payoffs are additive between

the two periods of life so that gift-giving is efficient.  Note the resemblance of the model

to Prisoners' Dilemma.  The myopic optimum for the young player is to withhold the gift,

just as defection is dominant when the Prisoners’ Dilemma is played once. However, the

overlapping generations environment allows for a connection between actions when

young and payoffs when old, just as repetitions would allow for consequences in later

periods to influence earlier actions in a repeated Prisoners' Dilemma.

They key assumption is that enables cooperative play is that young players are

(partially) informed about the history of their older opponent. Following Kandori [1992]

we model this through information systems.  An information system provides a signal

about past play. We examine the simplest case in which this signal can take on two

values, which we describe as a “red flag” or a “green flag.”  Let { , }r g  be the set of flags.

Formally, an information system is a map  :  {0,1} { , } { , }i r g r g� �  that assigns an old

player a flag based on his own action (the size of the gift – 0 or 1) and the flag of the
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opponent he met when young. It is easily checked that there are 16 information systems.

We denote the set of information systems by I and if  for the flag corresponding to

information service i.

Flag vectors F  corresponding to the different information systems are observed

by young opponents as follows. With probability 1 η−  the flag vector observed is equal

to the vector assigned by the different information systems. With probability 0η >  the

flag vector observed is chosen randomly according to a uniform distribution on F .  We

assume that the chance a player is assigned a random flag vector is small: specifically

that : (1 ) 1β α η= − > .

Finally, we assume that a young player may consult only one information system.

This means that the only feasible strategies are those of the form ( , )s a i=  consists of the

choice of one information system i I¶  and a map :{ , } {0,1}a r g �  that assigns an

action to a flag.

Finally, we must specify how expected utility � � 	U S T  is determined. Utility to a

young player depends on expectations of future play by next period young players T  and

on the distribution of flags among current old players. As usual, we take the previous

period distribution of strategies 
�T

T
�

 as a proxy for beliefs about expectations of next

period play. We further assume that the distribution of current old player flags is believed

to be the steady state distribution5,6 of flags corresponding to 
�T

T
�

 being played

repeatedly. Since all flag vectors have positive probability, this steady state is unique and

we denote the corresponding marginal probability distribution over &  by 
�

� 	
T

G T
�

.

Expected utility is then calculated with respect to G .

We are going to focus on two key types of strategies. One is the always selfish

strategy of making a low transfer regardless of the old opponent’s flag vector. The second

type of strategy we consider is exemplified by the green-team strategy. This uses an

information system that assigns a green flag to high transfer against a green flag and low

                                                
5 This long run view of the flag distribution may seem inconsistent, but the overlapping generations
structure does not mean that each player only plays once, merely that information about play only persists
for a single period.
6 If beliefs about flag distributions are noisy this will effect results. However, as theorists we are looking
for simple cases to build qualitative intuition – numerical analysis requires simulations. Our focus here is
on role of imitation in propagation so we do not choose to let it compete with other sources of randomness.
The assumption that flag distribution are steady state are only one of many such simplifying assumptions
standard in theoretical evolutionary analysis: we do not allow for noise in computing relative best
responses, in sampling strategies from the population or in payoffs.



14

transfer against a red flag, and a red flag to low transfer against green flag and high

transfer against a red flag. The strategy itself is to give high transfer on green flag, low

transfer on red flag. That is a green flag means the player is a member of the team; team

members are supposed to give high transfers to team members and low transfers to non-

team members. Behaving as a team member is the ticket for admission to the team; the

penalty for failing to behave as a team member is expulsion from the team. The other

strategy in this class is red-team which uses the same information system, but uses the

convention of high transfer on red and low transfer on green.

Theorem 5.1: If �C �  and I  sufficiently small the unique stochastically stable state is

always selfish; if �C �  the unique stochastically stable state places weight ½ on each

green-team and red-team.

Proof: See Appendix A.

æ

Notice that this is very sharp: for �C �  we get always selfish; for �C �  we get the

two team strategies as the stochastically stable set. This can be compared to Johnson,

Levine and Pesendorfer [1999] who examine the standard model under slightly different

assumptions and with elaborate calculations are able to get the team strategies emerging

as stochastically stable only for �C � .

6. Characterization of Stochastically Stable States

We first describe 8  in greater detail as a preliminary to defining the modified

resistance, which can be used to give an exact characterization of stochastically stable

state.

Denote by 
K
8  the subset of X � 8  for which � � 	3 KX b . Most of the “action”

takes place in 
�
8  in the sense that it is unlikely that there are more than two pure

strategies being used in the population at any moment of time. The space 
�
8  has a

relatively simple topological structure, consisting of pure strategies and the segments

connecting them. This has important consequences:

Lemma 6.2: If 
�

X � 8 , � �T T X� , � �	 � 	3 3T T�  with � 	 � �	 � �	 �S S ST T T� � �

then �T X� .
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Proof: If � �T T X�  there must be a relative best response path, or equivalently a path of

zero resistance between the two. Such a path cannot pass through 
�
8 , so it must pass

through �T . This means that �T X�  as well.

æ

We illustrate 8  in the figure below. Here there are 4 points [ � � � ]! " # $S S S S  in

�
38 � . The dashes connecting those pure strategies represent points on the grid M4 ;

that is, they are mixtures between exactly two pure strategies. (Note that the drawing is

not exact, since there should be the same number of points �M �  between each pair of

pure strategies.) There are three points [ � � ]X Y ZX X X  in 
� �
<8 8 . Each one is a set of

points in 
�

M4 . The point ZX  has � 	 [ � ]Z " $3 S SX � , and consists of two points in 
�

M4 .

The points �X YX X  each have � � 	 [ � ]X Y ! $3 S SX X � . The point XX  consists of two

points in 
�

M4 ; the point YX  a singleton in 
�

M4 .

The case of XX  and ZX  are in a sense typical of points in 
� �
<8 8  in consisting

of two points in 
�

M4 . Two see this, let us refer to a mixed strategy equilibrium in a game

using a subset consisting of two pure strategies only as a relative mixed equilibrium.

Recall that any point in 8  consists of points in 
�

M4  that are minimal invariant under the

relative best-response dynamic. Consider [ � ]Z ZX T T;� . Ruling out ties, and

remembering that only one player moves at a time, this means that :T  is a relative best

response to ZT  and vice versa. Consequently, ZX  is a two-cycle. Because only one

player moves at a time, there cannot be cycles of length longer than 2 in 
� �
<8 8 . Notice

that such a two-cycle arises when �Z :T T  are separated by a non-grid point that is a

relative mixed strategy equilibrium stable in the continuous time best response dynamic.

Of course if such a relative mixed equilibrium was actually on a grid point, then that

point would as a singleton set be in 
� �
<8 8  such as X . However, it is unlikely that a

relative mixed equilibrium will actually lie on a grid point. If a relative mixed

equilibrium is unstable in the continuous time best response dynamic, then there will be

no corresponding point in 
�

8 .

Suppose that 
�

�X X � 8% . We say that they are adjacent if it possible to go from

one to the other without passing through another point in 
�
8 . More precisely,

�
�X X � 8% are adjacent if there is a path 

� �
� � � 	 M

+
T T � 4K  from X  to X%  such that for

all 
�

X � 8)  and � K +� � , 
K
T X� ) . For example, in the figure, �X X  are adjacent

because 
� �
� �T TK  is a path between them that does not pass through any X � 8 .
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Notice that every point in <8 8  is adjacent to exactly two other points in 8 , while

points in 
�
8 are adjacent to � �3 �  points (3 in the example).

�
T

�
T

�
T

�
T

�
T

XX

YX

ZX

!S "S

$S

#S

ZT
:T

For any two points 
�

�X X � 8% , there is a unique sequence 
� �
� �

+
X X � 8K  such

that 
�

X X� , 
+

X X� %  and 
�

�
K K

X X
�

 are adjacent. For each K  define

�

� �� �
� � � 	 � � 	 � � 	

K +

J JJ JJ J K
R K R RX X X X X X

�

� �� � �
� �� �%

and define � � 	 MIN � � � 	
K

R R KX X X X�% % . Note that � � 	 � � 	R RX X X X�% % . The modified

resistance is e� � 	 � � 	 � � 	R R RX X X X X X� �% % %

Theorem 6.2: With unlikely innovation � 	 �N X �  if and only if X  is the root of a tree

with least modified resistance in 
�
8 .

Proof: In Appendix B.

æ

7. The Continuous Approximation

In many applications it is useful to think of M  as being large, as round-off error

on the grid is not usually of much economic interest. This leads us to define cost as the

limit of per capita modified resistance. Most results about modified resistance then have

an analog in terms of cost.

Suppose that �S S 3�% . As we did earlier, for � �Xb b  define a family of

mixed strategies � 	XT  by � 	; = � � 	; = �X S X X S XT T� � �% . Consider the utility difference
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� 	 � � � 		 � � � 		5 X U S X U S XT T� � 	% .

Define

\ ^� �

� �

� � 	 �� � 	 �	 MIN �� � 	 �	 �� � 	 �	
Y

Y
Y

C S S 5 X DX 5 X DX 5 X DXw � � � � �¨ ¨ ¨% .

 For any pure profile S  let � 	4 S  be all trees on 3  with root S .

� 	
e� 	 MIN � � � 		

4 S S
C S C S S

U

U
�

� �
%

% % .

We first establish the relationship between modified resistance and cost.

Theorem 7.1: LIM � � 	� � � 	
M

R S S M C S S
ld

�% % .

Proof:  Follows from integration theory and the definitions.

æ

The most useful application of Theorem 7.1 is through an obvious corollary.

Corollary 7.2: If � 	 � 	C CU U� %  then for all M  sufficiently large, e e� 	 � 	R RU U� % .

This corollary means that for M  large the least modified resistance trees are a subset of

the least cost trees. In particular, least cost is a necessary (although no longer sufficient)

condition to be stochastically stable. From Theorem 6.1, we have

Corollary 7.3: Suppose unlikely innovation and sufficiently largeM . Then �[ ]	 �SN �

only if

e e� 	 MIN � 	
S 3

C S C S
�

�
%

% .

Finally, because zero cost connection play an important role in the theory, it is important

that zero cost implies zero modified resistance for all sufficiently large M .

Theorem 7.4: If � � 	 �C S S �%  then for all M  sufficiently large � � 	 �R S S �% .

Proof: To be shown.

æ

8. Further Results

We now give a more detailed characterization of stochastically stable sets.

Definition 8.1: �S  is a strongly better response to S  if � � �	 �C S S �
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If a profile admits no strongly better response, we call it a generalized strict Nash

equilibrium.

Definition 8.2: S  is a generalized strict Nash equilibrium if � � �	 �C S S �  for all

�S Sv .

Since a strategy that does strictly worse cannot be a strongly better response, every strict

Nash equilibrium is a generalized strict Nash equilibrium.

Definition 8.3: 4  is a strongly better response cycle if

1) S � 4  and �S  a strongly better  response to S  implies �S � 4

2) � �S S � 4  implies a sequence 
� �

� � � � 	
+

S S SK  such that 
�

� �
+

S S S S� �  and 
�K

S
�

 is a

strongly better  response to 
K
S

Theorem 8.1: If S  is the unique long-run stationary state then S  is a generalized strict

Nash equilibrium

Proof: If not and S  is the root of a least cost tree, find � � �	 �C S S �  and paste it above the

root.

æ

Remark: The sum of costs in both directions is less than or equal one.

Theorem 8.2: In a least cost tree � � � 		 ���C S SU b

Proof: If not cut S . Pasting either above or below the root costs less than or equal ½.

æ

Denote the set of pairs with costs strictly between zero and one

[� � �	 \ � � � �	 �]0 S S C S S� � � .

Assumption 8.1 [Generic Assumption]: If 
� � � �
� �0 0 0 0 0� v  then

� �

� 	 � 	
P 0 P 0

C P C P
� �

v� �

Theorem 8.3: Under the assumption 8.1  if 
 [ \ � 	 �]S SN8 � �  is not a singleton, it is

a strongly better response cycle.
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Proof: If S  is the root of a least cost tree, then so are all strongly better responses, since

we may cut them and paste above the root without increasing the cost. Suppose that �S  is

the root of a least cost tree and that there is no zero-cost path from �S  to S . Let ��S  be

the first predecessor of �S  in the lowest cost S -tree that is connected with a non-zero

cost. Then there is a least cost tree with root ��S . But this tree does not have the cost

� ��� � ��		
S

C S SU , so the tree has a different cost then the S -tree by the generic assumption.

æ

Remark: It should be possible without the generic assumption to show that we get at most

a collection of generalized Nash equilibria and strongly better response cycles.

Remark: An implication of Theorem 8.3 is that under the generic Assumption 8.1 either

there is a generalized strict Nash equilibrium or a strongly better response cycle. We can

show directly that this is true in every game. For any point S  define the successor set

� 	3 S
r

to be the set of points reachable by a sequence of zero cost moves. Suppose there is

no generalized strict Nash equilibrium. Then every strategy has a strongly better

response. So there exists a point � 	S 3 S�
r

. We say that � 	3 S
r

 is minimal if there does not

exist a point � � �	S 3 S�
r

 with � �	 � 	3 S 3 S�
r r

. Since 3   is finite there exists a minimal set.

We claim that such a minimal set is a strongly better response cycle. Already � 	3 S
r

 is

closed under the strongly better response operation since by construction it contains all

successor points. Let � � 	S 3 S�
r

. We must show � �	S 3 S�
r

. Suppose not. It may not be

the case that � � �	S 3 S�
r

, but because there is no strong better response cycle, there is a

point �� � �	S 3 S�
r

 with �� � ��	S 3 S�
r

. Since �� � �	S 3 S�
r

 it must be that � ��	 � �	3 S 3 S�
r r

and by hypothesis � �	S 3 S�
r

 so � ��	S 3 S�
r

. But � � 	� �� � �	S 3 S S 3 S� �
r r

 so �� � 	S 3 S�
r

implying � ��	 � 	3 S 3 S�
r r

 and we have contradicted the assume minimality of � 	3 S
r

.

Three Strategy Games

We now characterize generic pairwise matching games in which � �3 � . We

make the generic Assumption 8.1, and the additional assumption

Assumption 8.2: For all �S Sv , � � �	 ���C S S v . If � � �	 �C S S �  then � �� 	 �C S S � .

Case 1: There is no generalized strict Nash equilibrium. Then there is a unique strongly

better response cycle consisting of all three strategies, which is the stochastically stable

set.
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Case 2: There is one generalized strict Nash equilibrium. There is no strongly better

response cycle, so generalized strict Nash equilibrium is the stochastically stable set.

Case 3: There are two generalized strict Nash equilibria. Attach the third strategy with

zero cost to one of the two equilibria, then we need only worry about how to attach the

equilibria; the equilibrium with least cost of getting to the other is the unique point in the

stochastically stable set.

Case 4: There are three generalized strict Nash equilibria.

Case 4a: One generalized strict Nash equilibrium beats the field. It is the unique point in

the stochastically stable set.

Case 4b: Two generalized strict Nash equilibria beat the field. This reduces to a contest

between the two; the one with the least cost of getting to the other is the unique point in

the stochastically stable set.

Case 4c: No generalized strict Nash equilibrium beats the field. Consequently each has a

unique successor with cost less than ½. This means the only possible least cost trees are

linear. The least cost linear tree has at the top the strategy with the greatest cost less than

½ , and this is the unique point in the stochastically stable set.

Notice that the only case where the stochastically stable set is not a singleton is case 1.
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Appendix A: Gift-Giving Game

Theorem 5.1: If �C � and I  sufficiently small the unique stochastically stable state is

always selfish; if �C �  the unique stochastically stable state places weight ½ on each

green-team and red-team.

Proof: If half the population is playing always selfish, high transfer when young can

yield an expected gain when old of at most ��C , while costing 1 today. So if �C � ,

always selfish wins all pairwise contests and is the unique stochastically stable state. This

is despite the fact that high transfer by all players Pareto dominates low transfer by all

players.

Clearly if green-team is stochastically stable, so is red-team and vice versa. We

will show that when �C �  the two strategies together beat the field, so, according to

Theorem 4.2, they constitute the unique stochastically stable set. Because of symmetry, it

suffices to consider just green-team.

Assume �C � . Notice first, that green-team beats always selfish. To see this,

suppose that half or more of the population is playing green-team, and the rest always

selfish. If the old opponent has a red flag, both strategies give a low transfer, and the

same expected utility. However, since there is flag noise, the steady state flag distribution

has some green flags, and in this case green-team and always selfish behave differently.

Always selfish today gives a benefit of 1 today, but green-team yields a benefit of at least

��C  tomorrow. This follows because with probability � I�  there is no flag noise, and

green-team will receive a high transfer from green team members, while always selfish

will not receive any transfer. If there is flag noise, the two strategies get the same

expected utility tomorrow. So under the assumption that �C �  the payoff to green-team

is strictly higher than that of always selfish. By a similar argument, green-team beats

never selfish, the strategy of high transfer regardless of flag vectors.

Consequently, we can restrict attention to opposing strategies that depend on the

flag from some information system. Without loss of generality, since the actual names of

the flags do not matter, we may examine the strategies that give high transfer on green

flag, low transfer on red flag.

There are four flag combinations of the form (green-team-flag, non-green-team-

flag). Let ���G b be fraction of population playing non-green-team. In all cases we can
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ignore the second period payoffs following a randomly assigned flag. We have the

following cases

(g,g): green-team and non-green-team play the same way, so give the same payoff.

(r,r):   green-team and non-green-team play the same way, so give the same payoff.

(r,g): green-team gets at least � �� 	G C� � ; non-green-team gets either GC  or 0

depending on whether it rewards itself for high transfer. Since ���G b , the advantage

to green-team is at least 1.

(g,r) if non-green-team is to beat green-team it has to win this one, since it ties or loses all

other  combinations, and combinations have positive probability.

Focusing on the (g,r) combination, green-team gets at least �� 	G C� . Non-green-

team gets either � GC�  or 1 depending on whether it rewards itself for high transfer. If

it gets zero, it loses since �C � . So it must assign low transfer on red a green flag.

Moreover, it cannot assign high transfer on red a green flag, since then it gives green-

team an additional GC , and again loses to green-team. So we may assume that non-

green-team on a red flag gives green for selfish, red for altruistic.

Suppose in fact non-green-team on a red flag gives green for low transfer, red for

high transfer. So green-team is winning at (r,g) and non-green-team at (g,r). Moreover,

non-green-team cannot reliably reward at (r,g) (that is, give green to high transfer on

green and red to low transfer on green) since then it actually is the green-team strategy.

So at (r,g) green-team actually has an advantage of � �� 	G C� � . To summarize the

advantage to green-team is:

(r,g) � �� 	G C� �

(g,r) �� 	 �G C GC� � �

Now we need the steady state probabilities.  Let R  be steady state probability of

(g,r). Then G  of the population is non-green team, and a fraction GR  of them meet (g,r),

so they give a low transfer and have probability �� 	I�  of winding up in (r,g). So the

steady state probability of (r,g) is at least �� 	 ��GR I I� � . Consequently, the expected

advantage of green-team is at least

	 
	 
 	 


	 
 	 
< >	 


�� 	 �� � �� 	 �� 	 �

�� 	 � �� �� 	 �� �� 	 �� � 	

GR I I G C R G C GC

R G I I R G I I R G G C

� � � � � � � � �

� � � � � � � � �
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Since 	 
�� 	 �� �� 	 �� � 	G I I R G G� � � � �  is strictly positive for � ���Gb b , this

is strictly increasing in C . So it suffices to show that this expression is non-negative

for �C � . Substituting �C �  yields

	 
	 
�� 	 � � 	 � � � ��	�� � 	R G I G G I G� � � � � �

This is quadratic in G  with second derivative � �� 	 �R I� � � , so it suffices to show the

expression non-negative for �����G � . At �G �  we have � �� �R I� � . At

���G �  we have ���� 	I R� , so it suffices that at the steady state ���R b .

It is easy to compute the steady state distribution when �I � . Conjecture that

���R � . The only way to get to (r,g) is for a non-green-team to meet (g,r),

� � 	 ���PR R G � . The only way to get to (r,r) is for a non-green-team to meet (r,g), so

� � 	 ���PR R R � . The only way to get to (g,g) is for anyone to meet (r,r) so

� � 	 ���PR G G � . Since that adds up to 1, we are done. Now it is pretty clear that adding

noise cannot make R  bigger than ½. We will do the local computation for I  small: Let

� 	X I  be the steady state probabilities if they are unique. Let E  be the vector

corresponding to a uniform distribution. Then Taylor’s theorem tell us that to first order

� 	 �� � 	 ��	 �X X EI I I� � � ; so that

 
�� � 	����	 � ����	

�� 	��

R I I

I

� � � �

�

æ
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Appendix B: Main Theorem

Theorem 6.2: With unlikely innovation � 	 �N X �  if and only if X  is the root of a tree

with least modified resistance in 
�

8 .

The proof requires several steps. In Lemma B.3, we show that we can characterize

�[ ]	 �SN �  by looking at least resistance trees on 
�

8 . We then show in Lemma B.4 that

there exist least resistance trees in 
�

8  with � 	U X  is adjacent to X . This enables us to

characterize �[ ]	 �SN �  by looking only at trees on 8 . First we establish a useful

technical result.

Lemma B.1: Suppose that � 	 �N X � , and that U  is a least resistance X -tree. Suppose

X Xv% . If � � 	 �3 X �%  then � � � 		 ��R N MX U X b �% % .  If � � 	 �3 X �%  then

� � � 		R MX U X b% % .

Proof: By Theorem 3.3 X  is a singleton pure strategy. Let U  be a least resistance X -

tree.

First, suppose that � � 	 �3 X �% . Then if we cut X%  and paste it to the root X  we

save � � � 		R X U X% %  in the cut. Moreover, either � � 	 ��R N MX X b �%  or

� � 	 ��R N MX X b �% .  In the former case paste X%  to the root, in the latter paste the root

to it. So the new tree has resistance increased by at most �� � � � 		N M R X U X� � % % . From

Young’s Theorem, this is non-negative, giving the first result.

Now suppose that � � 	 �3 X �% . Suppose in particular that � 	 [ � ]3 S SX � )%% .

Observe that either � � 	 ��R S MX b%%  or � � 	 ��R S MX b)% . Without loss of generality

suppose the former. As in the previous case, we may cut S%  and paste either above or

below the root. The new tree has resistance increased by at most ��M . Now, cut X%  and

paste it to S% . The cutting saves � � � 		R X U X% % , while the paste adds at most ��M  by the

way we chose S% . So we have increased resistance by at most

�� � � � 		 �� � � � 		M R M R MX U X X U X� � � �% % % % . From Young’s Theorem, this is non-

negative, giving the second result.

æ

In Appendix C we prove
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Lemma C.1 [Tree Trimming]: Let 
8 � 8 � 8% . Suppose that for every least

resistance tree in 8% , there is another least resistance tree U  with the same root and

 
� 	U X � 8 whenever 
 
X � 8 .  Then least resistance trees in 8%  have roots in 
8 ,

and X  is the root of a least resistance tree in 8%  if and only if it is the root of a least

resistance tree in 
8 .

Lemma B.2: With unlikely innovation � 	 �N X �  if and only if

�
� �
� 	 MIN � 	R R

X
X X

�8
�

%

%

Proof: If � � 	 �3 X � , by Lemma B.1, � � � 		 ��R N MX U X b � . On the other hand, if

� � � 		 �3 U X � , then � � � 		 �R NX U X p . With unlikely innovation, this is a contradiction.

If � � 	 �3 X � , by Lemma B.1, � � � 		R MX U X b . On the other hand, if

� � � 		 �3 U X � , then � � � 		R NX U X p . With unlikely innovation, this is again a

contradiction.

We conclude that if 
�

X � 8  then 
�

� 	U X � 8 . The result then follows directly

from Lemma C.1.

æ

Lemma B.3: With unlikely innovation if � 	 �N X �  there is a least resistance X -tree U

in 
�

8  such that X%  and � 	U X%  are adjacent for all X Xv%

Proof: Let U  be a least resistance X -tree. Suppose that X%  and � 	U X%  are not adjacent.

Then every for every path from X%  and � 	U X%  there must be some X)  and T X� )  that

lies on that path. In particular, this must be true for any least resistance path from X%  to

� 	U X% . In this case, it is obvious from the definition of resistance that

(*) � � 	 � � � 		 � � � 		R R RX X X U X X U X� b) )% % % % .

If X%  is in the subtree with root X)  cut it and paste it to X) . Cutting reduces the

resistance by � � � 		R X U X% % , while pasting adds � � 	R X X)% . By (*) the resistance of the tree is

not increased.

Suppose that X%  is not in the subtree with root X) . First we cut X)  and paste it to

� 	U X% . Then we cut X%  and past it to X) . In effect, we place X)  in between X%  and � 	U X% .

Cutting X)  does not increase the resistance. Pasting to � 	U X%  increases the resistance by

� � � 		R X U X) % . Cutting X%  reduces the resistance by � � � 		R X U X% % . Pasting it to X)  increases
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the resistance by � � 	R X X)% . So the resistance is increased by

� � � 		 � � � 		 � � 	R R RX U X X U X X X� �) )% % % % . By (*) the resistance of the tree has not been

increased.

Now repeat the process, noting that once � � 	X U X% %  are adjacent, the procedure

never breaks this link, so the process does not cycle. At the end we have a least resistance

X -tree with the required property.

æ

Proof of Theorem 6.2: Given any 
�

8 tree U  with root in 
�

8 , we may define a tree

�
� 	U8  in 

�
8  by defining 

�
� 	� 	U X8  to be the closest predecessor of X  in 

�
8 . If U  has

a root in 
�

8  and if X%  and � 	U X%  are adjacent for all X Xv%  we say that U  is an

adjacent-8  tree. By Lemma B.4 and Young’s Theorem � 	 �N X �  if and only if X  is

the root of a least-resistance adjacent-8  tree. We will show that within the adjacent-8

trees there is a class of proto-
�

8  trees for which

�
e� 	 � � 		 � � 	��

S S

R R R S SU U
v

� 8 ��
%

% ,

and that there exist least resistance X  proto-
�

8  trees. Since � � 	��
S S

R S S
v

4
%

%  is a constant

that does not depend on U , and since 
�
�	8 ¸  preserves the root and maps the space of

proto-
�

8  trees onto the space of 
�

8  trees, this implies the desired result.

Consider a node 
�

<X � 8 8  in an adjacent-8  tree U .  We refer to this as a

binary point. Observe that a binary point can be adjacent to only two points.  Since a

binary point is not the root, is has an immediate predecessor that is adjacent to it, and it

follows that it can have only one immediate successor. If X  has a successor in 
�

8  we

call it a trapped node if not we call it a dangling node.

For two points 
�

�S S � 8% , let 
� �
� �

+
X X � 8K  be the unique sequence such that

�
X X� , 

+
X X� %  and 

�
�

K K
X X

�
 are adjacent. Observe the all of these nodes are

trapped, or all are dangling. Note that the resistance is

�

��
� � 	 � � 	

+

K KK
R S S R X X

�

��
� �% .

If � 	� 	S SU8 � % , because U  is adjacent-8 , in U the nodes 
K

X  must be trapped in

between �S S%  in the correct order. This implies that the resistance of U  is the resistance

of 
�
U  plus the resistance of the dangling nodes.
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If neither 
�
� 	� 	S SU8 � %  nor 

�
� 	� 	S SU8 �%  we say that �S S%  is a dangling pair. In

this case, for some K  
K

X  is a successor of S  and 
�K

X
�

 is a successor of S% . In the least

resistance tree, we clearly must choose K  to minimize

�

� �� �
� � � 	 � � 	 � � 	

K +

J JJ JJ J K
R K R RX X X X X X

�

� �� � �
� �� �% .

Any tree which minimizes this expression for all dangling pairs is called a proto-
�

8  tree.

Notice that for any 
� �
U � 8  there is a proto-

�
8  tree U  with 

� �
� 	U U8 � , so the map

�
�	8 ¸  is onto as asserted.

To compute the resistance of the dangling nodes in a proto-
�

8  tree, we sum

� � 	R S S% over all dangling pairs �S S% . Alternatively, instead of adding 
� �
� � 		R U8 to R  for

all dangling pairs, we may add it to R  for all pairs, and subtract � � 	R S S%  for those pairs

that are not dangling. In other words,

� �
� 	 � � 		 � � 	�� � � � 		

S S S

R R R S S R S SU U U
v

� 8 � �� �
%

%  .

Substituting the definition of the modifed resistance, this is the desired result.

æ
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Appendix C: Tree Trimming

Lemma C.1 [Tree Trimming]: Let 
8 � 8 � 8% . Suppose that for every least

resistance tree in 8% , there is another least resistance tree U  with the same root and

 
� 	U X � 8 whenever 
 
X � 8 .  Then least resistance trees in 8%  have roots in 
8 ,

and X  is the root of a least resistance tree in 8%  if and only if it is the root of a least

resistance tree in 
8 .

Remark: Notice that this can be applied recursively. That is, after we have applied the

lemma once to looking only at trees in 
8 , we can then apply the lemma to a subset


 
8 � 8 .

Proof: We refer to a tree for which 
 
X � 8  implies 
 
� 	U X � 8  as a proto- 
8

tree. It is apparent the proto- 
8  trees must have roots in 
8 , so by the hypothesis, least

resistance trees in 8%  must have roots in 
8 .

Next, we map proto- 
8  trees to 
8  trees, and show how to compute the

resistance of the proto- 
8  trees from that of the corresponding 
8  tree. This will enable

us to show that it is sufficient to minimize resistance over 
8 . Specifically, a proto- 
8

tree U%  gives rise to a unique tree 
� 	U8 %  on 
8  defined by 
� 	� 	 � 	U X U X8 �% % . Define








 

< � 	

<

� � 		 � � � 		

� 	 � � � 		

ROOT
R R

R R

X U

X

U X U X

U X U X

�8

�
�8 8

8 �

�

�
�

%

%

% %

% %

Then


 
� 	 � � 		 � 	R R RU U U
�

� 8 �% % % .

Finally, consider a tree 
U  in 
8  and a proto- 
8  tree U% . We may construct

another proto- 
8  tree 
U U� %  by










� 	
� 	

� 	 <

U X X
U U X

U X X

£ � 8¦¦¦� � ¤¦ � 8 8¦¦¥
%

%%

This tree has resistance 

 

� 	 � 	R RU U

�

� % .

Now suppose that U  is a least resistance tree. Let U%  be the corresponding least

resistance proto- 
8  tree. Suppose that 
 
 
 
� 	 � � 		R RU U� 8 % .  Then
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e� 	 � 	 � 	 � � 		 � 	 � 	 � 	R R R R R R RU U U U U U U U
� �

� � � � 8 � � �% % %

contradicting the assumption that U  has least resistance. This proves the “only if” part of

the Lemma.

 Suppose conversely, that 
U  has least resistance among all 
8  trees. Let U%  be a

minimizer of � 	R U
�

% . Then clearly 
U U� %  is least resistance in 8% .

æ

Corollary C.2: Suppose that 
8 � 8 � 8% , and that for all 
 

 
 
� � � <X X X X8 � 8 8%%% % .

(i) If 
 
� � 	 � � 	R RX X X X� %% %  then roots of least resistance 8%  trees are in 
8 .

(ii) If in addition 
 
 

 

 
� � 	 MIN[ � � 	� � � 	]R R RX X X X X Xp%  then X  is the root of a

least resistance tree in 8%  if and only if it is the root of a least resistance tree in

8 .

Proof:  First, we establish that least resistance trees in 8%  must have roots in 
8 . If not,

then there is some 
<X � 8 8%%%  that is the root of a least resistance tree U . Moreover,

there must be some 
 
X � 8  with 
 
� 	 <U X X� � 8 8%% . Cutting 
X  saves 
� � 	R X X% .

Pasting the root to 
X  costs 
� � 	R X X%% . So by assumption the resistance of the tree has

been strictly reduced, contradicting the assumed minimality of U .

Now suppose that 

 
X � 8  is the root of a least resistance tree U . If

 
� 	 <U X X� � 8 8%% , then cutting 
X  saves 
� � 	R X X% . If 
 

 
� � 	 � � 	R RX X X Xp%  then

pasting the root 
X  does not increase the resistance; while if 
 
 

� � 	 � � 	R RX X X Xp%  then

pasting 
X  to the root does not increase the resistance. By assumption, one of these must

be the case. Proceeding iteratively, we see that there exists a least resistance treeeU in

which 
 
X � 8  implies 
 
e� 	U X � 8 .  The result now follows from Lemma C.1.

æ
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