Journal of Mathematical Economics 18 (1989) 357-376. North-Holland

INFINITE HORIZON EQUILIBRIUM WITH INCOMPLETE
MARKETS

David K. LEVINE*
University of California, Los Angeles, CA 90027-1477, USA

Submitted October 1986, accepted December 1988

Competitive equilibrium in a broad class of economies with production, market incompleteness
and varying degrees of market participation is studied. Equilibria are characterized as limits of
finite horizon truncated equilibria. The key assumption is one of extensibility, meaning that there
are short sales restrictions adequate to prevent traders from acquiring debt that they will not be
able to honor ex post.

1. Introduction

This paper examines competitive equilibrium in an infinite horizon model
with incomplete markets. The class of economies we study is relatively broad:
it allows production, both infinitely lived agents and overlapping generations,
and market participation which is either random or deterministic. In
addition to the traditional overlapping generations model and the finite
horizon incomplete markets model, this class of model includes as a special
case the monetary model of Bewley (1980, 1983), applications of which can be
found in Scheinkman and Weiss (1983), and Levine (1986, 1989). Cash-in-
advance constraints of the type studied by Lucas and Stokey (1987) can also
be modeled in this framework by careful limitation of market participation.

The goal of this paper is to characterize equilibria in the infinite horizon
as limits of finite horizon truncated equilibria. The central focus is on a
condition called extensibility. In an incomplete market model, this condition
says that if short sales constraints have been satisfied through a particular
date, then, at equilibrium prices in the next period, it is possible to trade in
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such a way as to satisfy the short sales constraints again. We show by
counterexample that without this condition there can be limits of finite
horizon equilibria that are not infinite horizon equilibria, and show that if it
is satisfied then it is both necessary and sufficient for an infinite horizon
equilibria to be the limit of finite horizon truncated equilibria.

The characterization of infinite horizon equilibria as limits of finite horizon
truncated equilibria can be used to prove existence theorems as Balasko and
Shell (1980), Wilson (1981), Muller and Woodford (1983) and Spear (1985)
do in studying various special cases of this model. By assigning weights to
terminal stocks of assets such as money it can also be used to prove the
existence of specific types of equilibria, as Bewley (1980,1983) and Levine
(1986, 1989) do in showing that money has value. In all of these models the
extensibility criterion is satisfied, and the limit of truncated equilibria is
shown to be an infinite horizon equilibrium. The converse — that every
infinite horizon equilibrium arises this way - is either trivial in the case of
pure overlapping generations models, or has not been examined in the case
of models with production or infinitely lived agents.

The complete characterization of infinite horizon equilibria as the limit of
truncated equilibria has been examined in a game theoretic setting by
Fudenberg and Levine (1983), and Harris (1985). This study is very much in
the spirit of those. There is, however, one important difference: because the
game models do not involve budget constraints, there is no need for a
criterion such as extensibility.

One complication that is common to the game theoretic setting and the
one here is the fact that with the most naive form of truncation there may be
infinite horizon equilibria that are not limits of finite horizon equilibria. In
the game theoretic setting, for example, the tit-for-tat equilibrium of the
infinitely repeated prisoner’s dilemma is not an equilibrium of the finitely
repeated game. In the current setting, an equilibrium in which money has
value is not an equilibrium of a finite horizon economy. The game theoretic
solution is to relax the solution concept by allowing agents in the truncated
games to only get within ¢ of the optimum, and to require that ¢ approaches
zero as the truncation horizon increases. The solution here is to relax the
solution concept by assigning terminal stocks of assets weight ¢ in the utility
function, and to require that ¢ approaches zero as the truncation horizon
increases. The proof that such a ‘transversality condition’ works is more
complicated than the straightforward game theoretic proof that every infinite
horizon equilibrium may be approximated by finite horizon e-equilibria with
& small.

Section 2 of the paper introduces the model. Section 3 considers a simple
example which illustrates the definitions and shows how extensibility is
needed to get infinite horizon equilibria from finite horizon limits. It also
relates the model of this paper to some of the literature on incomplete
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markets with a finite horizon. Section 4 states and proves the main theorems
about approximating infinite horizon equilibria with truncated equilibria.
Section 5 concludes by discussing conditions under which the results here
could be used to prove an existence theorem.

2. The model

We study an economy in which there are countably many markets s€S.
Each market s meets at a specific time t(s)e{1,2,...}. Only finitely many
markets meet at any given time. Different markets meeting at the same time
represent markets at different locations, or contingent markets which meet
only in certain states of nature. An example of a market structure of this type
has finitely many states of nature #, in each period. A market is identified
with a finite history of the states of nature s=(n,7,,...,7,). The time at
which the market meets, {(s), is the length of the finite history. Taking 7, to
be historically given, the set of markets form a tree. In the more general case,
we do not make this assumption.

The objects that are traded in markets are called claims. There are
countably many claims ce C. A claim may represent a direct claim to current
consumption, or it may be either a claim to receive other claims in
subsequent markets: it may be either a commodity or an asset. In general,
claims both figure into the utility function, and provide a future return.

Each claim is traded in exactly one market, and only finitely many claims
are traded in any given market. As a result, although strictly speaking a
market is not a collection of claims, we may abuse notation to write ces if ¢
is traded in market s. We also define t(c)=1(s) to be the time at which c is
traded.

Claims are held and traded by agents. There are countably many agents
ae A, but only finitely many agents may trade in any given market. We write
aes if a is allowed to trade in market s. Some finitely-lived agents may only
participate in finitely many markets. Other infinitely-lived dynasties may
participate in infinitely many markets.

It should be emphasized that the markets meeting at a given date, the
claims traded in a given market, and the agents who participate in a given
market are all finite.

The planned holding by agent a of claim ¢ is denoted by xieR. The
infinite vector of planned holdings of all claims by agent a is denoted by x°
We may think of x* as an element of R®, the space of all sequences of real
numbers. This is a topological space in the product topology. Agent a’s
preferences over claims is given by a utility function U% R®—>Ru(— o).
This satisfies

A.1. U*® is weakly concave and weakly monotone. For all ¢>0 there exists
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T and 6>0 such that if U%(x%), U%(y*)> — oo and max,sr|x¢— y?| <4, then
|U*(x*) — U*(y")| <e.

Utility need not be strictly monotone: claims which are not claims to
consumption, but merely rights to future claims, do not enter into utility at
all. The fact that U® is actually concave rather than quasi-concave is not
unduly strong. The concave representation will be useful later when dealing
with truncated utility.

The second half of assumption A.1 requires that U® be uniformly
continuous in a uniformity consistent with the product topology. It implies
that consumption in the far distant future makes little difference to current
utility. This insures that preferences are ‘continuous at infinity’ in the sense of
Fudenberg and Levine (1983), and makes it possible to draw inferences
about infinite horizon equilibrium from the finite horizon case.

We make one other technical assumption about utility.

A2 If Ux*)>—o0, UYy")>—o0 and z2=x? for t(c)<T, zi=y; for
t(c)> T, then U%(z%)> — 0.

This says that if two plans both yield some utility, then the plan that consists
of combining the earlier part of one plan with the later part of the other also
yields some utility.

As an example of a utility function satisfying A.1. and A.2, let x{ be the
subvector of x® for which the corresponding claims ces, and let u$(x;) be real
valued continuous functions on the non-negative orthant weakly concave,
weakly monotone and bounded above by il =0, below by uf<0. Assume
that Y, s < 00, and Y, su?> — co. Define

Y ui(x®) x¢20 allceC
Uﬂ(xa) — J{ se§
— 0 x2<0 some ceC.

It may easily be shown that this function satisfies A.1, and it obviously
satisfies A.2.

Some claims are claims to consumption and enter into the utility function.
Other claims return future claims. We let 6., denote the units of claim c an
agent will receive if he holds one unit of claim d. The return 6,,#0 only if
t(c)>t(d): a claim can return only claims which are traded subsequently. This
rules out the possibility that the amount of claims available for trade could
be affected by trades which are consumated later.

Let w*eR*™ denote agent a’s endowment of claims. The total amount of
claim ces available to a for trading at s is

Z ocdx: + Wg,
t(d)>t(c)
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that is, it adds the endowment to the returns on claims held in earlier
markets. The no trade portfolio x* is the holding that results if a passively
roles over his portfolio without trading. This is defined recursively. If #{c)=1,
then x2=w?. At time ¢, for claims with t(c)=t, we may define

i’: = Z chis + Wg.
t(d) <t(c)

Since #(d)<t(c), X% has already been defined inductively, and this definition
makes sense.

Let p, denote the price of claim c. If agent a is not allowed to tradz c, then
his holding of ¢ is given passively by

El x!< Y O.,x5+wl,  a¢s, ces.
t(d) <t(c)

If a is allowed to trade at s, then he must satisfy the budget constraint

E.2. chx'C’gch( Y chx§+w‘c’>, aes.

ces ces t(d) <t(c)

Notice that both versions of the budget constraint, (E.1) and (E.2) allow the
possibility of free disposal.
The rate of return on claims is non-negative:

A3 6,420all c,deC.

This is a convention similar to the fact that utility is monotone: more current
claims can yield only additional future claims. It can be argued, as
Geanakoplos and Polemarchakis (1986) do, that it is not unreasonable to
allow negative returns on insurance contracts. However, Geanakoplos and
Polemarchakis make the weaker assumption that there is at least one
portfolio yielding strictly positive returns. This can be shown to imply that
there is an equivalent set of claims (spanning the same set of returns) with
non-negative returns. In understanding A.3, it is important to keep in mind
that agents can construct portfolios with negative returns by selling short.

It is generally useful to distinguish between those claims which figure
directly into utility, and those that are merely a claim to future claims. We
refer to claims that do figure into (some agent’s) utility function as
consumption claims. We can recursively define a backed claim to be either a
consumption claim, or a claim which pays out a positive amount of a backed
claim. Conversely unbacked claims pay out only other unbacked claims, and
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never lead to an eventual payout of a consumption claim, no matter how
many times the portfolio rolled over. Money is a typical example of an
unbacked claim.

In addition to the budget constraints, there can be constraints on short
sales. Each agent a who can participate in market s is subject to a single
borrowing constraint X%(p). This is a subset of R, and we require that

E.3. x°eXip) for all aes.
The set X?%(p) must satisfy

A4 (a) X¥p)is a closed convex set;

(b) if x*e X%(p) and y?=x? for t(c) t(s), then y* € X:(p);

(c) if x*e X%(p) and y?=x? for ce C, then y*e X{(p);

(d) if x*e X%p) and q.=p, for t(c) S t(s) then x* € X5(q);

() if g.—p., yi—x for t(c) S#(s), and y*€ X3(q) then x* e X{(p);

(f) if g.—p. for t(c)<t(s) and x"eX%(p) for #(s)<t(s), then there are
y*e X%(q) with y2—x? for t(c) S1(s).

Part (b) states that the constraint X3(p) constrains only holding at or before
the market s. Part (c) assures that if a plan is feasible, then having more of
everything is as well. As in the case of rates of return, this is a convention
that claims are unambiguously good: more claims can only make it easier to
satisfy the short sales constraints. However, the set X§(p) may be all of R,
so that this formulation is consistent with the absence of any short sales
constraints. Notice that large holdings of claims in earlier markets may make
it easier to satisfy the short sale constraints in the current market. Since these
earlier claims may have a return that will not be realized until a future
market, they may well be used as security for current indebtedness. Part (d)
asserts that X%(p) depends only on prices at or before #(s). Parts (e) and {3
assert that the correspondence p— X? is upper and lower hemi-continuous.
It is assumed that

A.5. If x° satisfies E.3 for all s with aes, then U%(x®)> — o0.

This amounts to assuming that the borrowing constraints are the only
constraints on the portfolio. Utility of —oo is effectively a constraint: it is
assumed that these ‘extra’ constraints do not bind if the borrowing con-
straints are satisfied.

If we assume that no agent can be forced to trade, then the no-trade
portfolio %° defined above must satisfy the short sale constraints. More
strongly, it is assumed that for some y*
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A.6. Xxi> yieinterior (X4(p)) for all aes and p,

so that the no-trade portfolio strictly satisfies the short sales constraints. This
is closely related to the assumption made in ordinary general equilibrium
theory that endowments are strictly interior, and could be weakened in much
the same way. Notice that there is no requirement that agents have non-
trivial endowments in markets in which they do not participate.

The production side of the economy is represented in each market s by a
transformation matrix A, with as many rows as there are claims traded at s.
This serves to convert current claims into current claims of different types.
This does not mean that there is no intertemporal production. Converting a
claim to current consumption into a claim for future consumption is a form
of investment. However, intertemporal production is possible only by
producing intermediate goods (claims) which are owned by specific individual
agents: firms themselves operate only contemporaneously.

In a given market the amount of claims available prior to production is
given by adding the returns on previous claims held by agents who can
participate in that market to their endowments. Let y,>0 be the levels at
which activities are operated. Social feasibility requires that demand not
exceed supply:

E4 Y x*SAy+). <w‘s‘+ Y 935x5> for some y,=0.

aes aes t(c) <1(s)

Here 6., is the vector composed of 8, with des.

Because more claims are unambiguously better by A.1, A.3 and A4, and
because there is free disposal, we may assume that prices are non-negative, so
that p.=0. Moreover, within a single market it is clear that only relative
prices matter. This leaves us free to adopt the convention that prices within
each market lie on the unit simplex. Throughout the remainder of the paper
we adopt this convention:

2p=1 p.20.

CES

The budget set B%(p) is defined to be the set of plans x®e R that satisfy
the budget constraints E.1. and E.2. and the short sales constraints E.3 in all
markets. An equilibrium of this economy is a vector of consumption plans X,
production plans §, and prices p which satisfy the social feasibility condition
E.4 and the individual rationality conditions.

E.5. For each agent U® is maximal subject to the budget constraint B%(p).
Profits are maximal in each market.
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Because there are constant returns to scale, in equilibrium, profits are
necessarily zero. In this setting of incomplete markets, the assumption that
firms act to maximize profits is controversial. Ekern and Wilson (1974) and
Radner (1974), consider stockholder unanimity as an alternative criterion for
firm decision making. The argument is that alternative production plans
yield different patterns of returns across states, effectively creating a market
for a different type of claim. Consequently, owners may actually be willing to
take a current loss of profit in exchange for a better pattern of returns across
states. In the model here, we avoid this issue by allowing only contempor-
aneous production, and forcing claims to be held by individual agents, rather
than in the form of shares of firms: firms purchase claims from agents,
convert them into different claims, and sell them back to agents. Alternative
production plans do not alter the set of markets perceived by price taking
agents: agents always perceive that they can buy unlimited claims of any type
traded in markets in which they participate. Roughly, the traditional
‘problem’ with production, involves agents who do not act competitively:
they effectively realize that by changing the firm’s production plan to
produce alternative claims, these claims will be available at a more attractive
price. It should be noted, however, that the ‘competitive’ form of production
described here is no more likely to lead to a constrained optimum than the
traditional form.

Our interest is not only in equilibria of the full model. We also are
interested in finite horizon truncated equilibria, and how they are related to
infinite horizon equilibria. We begin by defining an economy truncated at
time 7. We let x* and %° be contingent plans for holding claims by agent q,
and let ¢% be non-negative weights for t(c)<T. The truncated utility
received by a if he follows the plan x° and the economy is truncated
according to X¢ and ¢% is defined as

$x% %2, 97) =U2) + 3. derxi, 21

HST

where z is defined by

Zs

_ {x‘; if c)=T (2.2)

2 if Ho)>T.

To avoid degeneracy, it is always assumed that U%(X*)> — co. Because of A.2,
this implies that if U%(x®)> — 0, so is UT(x", X*, ¢7). The weights ¢7 are used
to capture the fact that claims held prior to truncation may have a valuable
return beyond the truncation horizon. They are essential in constructing
truncated equilibria in which unbacked claims have positive value.
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An equilibrium is a vector of consumption plans %, production plans ¥,
and price p which satisfy E.1 through E.5 in all markets for the original
utility function. The truncated budget set Bf(p) is defined to be the set of
plans x“eR® that satisfy the budget constraints E.1 and E.2 and the short
sales constraints E.3 in all markets with t(s) < T. An equilibrium truncated at
T with weights ¢, and future consumption x also is a vector of consumption
plans %, production plans 9, and price p which satisfy E.1 through E.5. Now,
however, the budget set is B}{p), the constraints E.1 to E.4 are imposed only
for markets with t(s) < T, the utility function in E.5 is the truncated one, and
profits must be maximized in E.5 only in those markets occurring at or
before T. Notice that a truncated equilibrium is by convention an infinite
vector of plans and prices. However, none of the components of these vectors
occurring after T is at all relevant to the equilibrium. In this sense the model
is really a finite horizon model: only the finitely many components of plans
and prices occurring at or before T matter.

3. An example

In this section we consider a model with a single state of nature and
location in which a single trader must determine how to hold a single
perishable consumption good, and a single asset — a one-period commodity
bond — over time. The unique equilibrium requires that prices be such that
the trader is willing to hold his endowment. After using this example to
demonstrate some of the notation introduced in the previous section, we
show how a sequence of truncated equilibria may converge to a non-
equilibrium. We use this to motivate the condition of extensibility which we
use in the next section to characterize infinite horizon equilibria as limits of
finite horizon ones.

Markets meet sequentially, so S={1,2,...}, and #(s)=s. In each market
two types of claims are traded: consumption claims c(s), and bonds b(s).
There is a single agent who can participate in all markets; the remaining
agents cannot participate in any market. The utility of the single agent who
matters depends only on consumption, and has the form:

t(s) >
U(x) — sgs ﬁ u(xc(s))a xc(s) = 0, all ce C (3. 1)

— 00, X.<0, someceC,

where u is strictly concave, bounded above and below, and differentiable, and
1>p>0. The consumption claim has no rate of return, so 6., =0 for all
claims ¢. The bonds are one-period consumption bonds paying off one unit
of next period consumption, s0 8, )= 1, and for c#c(s+1), O =0.

The agent who matters is endowed with a single unit of consumption,
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W.y=1, and no bonds, w,,=0. There are potentially two short sales
constraints in the market s defining the set X, independent of p: holdings of
consumption are constrained to be non-negative, x, 20, and short holdings

of bonds are limited by x,,=x, where x<0, and we allow the possibility
that x = — oco. The budget constraint in market s is

P o[ Xesy— 1= Xps— 1)] + Pois)Xpiy = 0, (3.2

where x,,=0 by convention. There is no production. As a result a plan x is
socially feasible if consumption is no greater than one, and bond holdings
are non-positive.

In the truncated case, we take the weights ¢r=0, and the truncated
consumption plan X is irrelevant, since (3.1) is additively separable. Regard-
less of the value of x there is a unique truncated equilibrium. In the final
period, T, it must be that p,pr=1, and pypr=0, for otherwise the agent
would try to sell bonds short in the final period, and use the proceeds to
purchase more than the single unit of consumption available to the economy.
In earlier markets, (s)<T, prices must be given by p.,r=1/(1+p), and
Posyr=P/(1+B), in order that the agent be willing to hold his endowment of
a single unit of consumption and no bonds.

The truncated equilibria converge to a limit: the plan is to hold the
endowment of consumption and bounds, and the prices are p.,=1/(1+p),
and p,=p/(1+p) in all markets s. Whether or not this is an equilibrium,
however, depends on x. If x= — oo, then the limit is not an equilibrium. In
this case a variety of Ponzi schemes can improve on the equilibrium level of
utility: short sales of bonds can be used to finance extra consumption, and
financed in turn by future short sales of bonds. If, however, x> —co, then
such Ponzi schemes are impossible, because the debt, which must grow at the
rate 1/, will eventually exceed the limit on short sales of bonds. In this case
the limit is an equilibrium. Notice the difference between the finite and be
infinite horizon cases: in the finite horizon it is possible to make short sales
of bonds useless in the final period by having their price equal to zero, while
in the infinite horizon case there are no final period prices to manipulate.
This also makes clear how the infinite horizon model differs from the finite
horizon incomplete market models studied by Hart (1975), Werner (1985),
Duffie (1987), Geanakoplos and Mas-Colell (1989), Geanakoplos and Pole-
marchakis (1986), and Duffie and Shafer (1985, 1986). Although those models
study what happens when there are no short sales constraints, from our
perspective there is a short sales constraint: in the final period no short sales
are possible. Of course this may equally well be arranged by making the
prices of final period assets equal to zero.

The reason that the limit of truncated equilibria is not an equilibrium
without short sales constraints is that the limiting budget constraint is very
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unlike the budget constraints approaching the limit. We continue to let p
denote the infinite vector of limit prices, and p; the infinite vector of
T-truncated equilibrium prices. Note that the definition of p,r, and pyyr is
rather arbitrary for t(s)> T. However, including these irrelevant prices insures
that both p and py lie in the same space, R®. Naturally p,—p in the product
topology, that is, it converges pointwise. Recall that B%p) is the budget
constraint set in the infinite horizon corresponding to the limit prices p: these
are the points which satisfy both the short sales constraints E.3, and the
budget constraints E.1 and E.2. Also, B%(p,) is the T period truncated budget
constraint when prices are p,;: here E.1, E.2 and E.3 only apply in markets at
and before period T. Roughly, the condition required to assure that p is an
equilibrium is that B%(py) ‘converges’ in some sense to B’(p). If x= —oo this
is not true: B%(p) allows Ponzi schemes that are not feasible in B%(pr). On
the other hand, since p,—p, as t— o0, B(p,) converges in a reasonable sense
to B%(p): In the example B%(p,)= B%(p) for t > T. Moreover, as T— oo, B¥(p)
converges in a reasonable sense to B%p): Indeed B%p)=()F¥-, Bf(p). The
problem is that B%(p;) involves a double limit: ¢t, T—oco simultaneously. It
turns out that the key element of uniformity required is that Bj(p,) is
reasonably close to B%(p,); that is, truncating B¥(p,) to T <t periods, should
not make too much difference. Consider again x= —o0. In B%(p,) there are
no restrictions on short sales of bonds, while in Bf(p,) short sales of bonds
are limited by the fact that no bonds may be sold short in the final period.
Of course the limit reflects the behavior of B3(p,) as p,—p, and in the limit
unlimited short sales are possible.

Turning to the general case, fix a sequence of prices p,—p in the product
topology. Let &,,£,>0. If T<t and x%eB%(p,), we say that x% is weakly
&1, &o-extensible if either max,, < |xér—x2|>¢, for all x*e B%(p), or if there is
a x!e B!(p,) with max,(c,§T|x‘j,—x;‘T|§82. In other words, x% must either be
further than ¢, from any point in the limit budget set B%p), or it must be
within ¢, of a point in Bi(p,). We also define strong ¢,,¢,-extensibility by
requiring that x7e B%(p,), rather than merely x{e B(p,). If ;=00 and ¢, =0,
we say simply that x4 is (weakly or strongly) extensible.

Turning from plans to budget sets, we define weak (strong) £y, &5-extensibility
of B%(p,) by requiring weak (strong) &,,¢,-extensibility of every x7e B%(p,).
Finally, we define approximate weak (strong) extensibility of the sequence of
prices p,—p. We require for every T and ¢, >0 there exists a T'>T and an
g, >0 such that for all t=T', B%(p,) is weakly (strongly) ¢,, ¢,-extensible.

An important example of strong approximate extensibility is the case of a
constant sequence pr=p. In this case if x%€ B%(p,) it is clear that either
max,<r|Xir—x%>e; for all x"eB(p) or max,,<r|xér—x¢|<e, for some
x%e B%(p,) = B%(p). Consequently, we may choose T'=T and ¢, =¢,.

A sufficient condition for p,—p to be weakly approximately extensible is
that it is never possible to trade into a position that will force the violation

J Math— C
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of future constraints. In other words, if x?_;eB{_,(p,), then there exists
x?e Bp,) with x&4=x% | for t(c)<t—1. Of course, by finite induction, this
implies for T<t and x%eBj(p,) there exists x{eBj(p,) with x&=x{; for
t(c)<T. In this case we may let ¢, =00 and ¢,=0 and see that the sequence
p,—p is weakly extensible.

We now return to the example to see how the extensibility conditions
apply. Note that in the example, there is no distinction between strong and
weak extensibility: any x°eB?(p,) can be extended to B%p,) by never
purchasing either consumption or bonds after .

If x=—o0, then B%(p,) allows unbounded consumption in all periods by
selling bonds at the terminal date, while B%(p,) prohibits consumption of
more than the present value of the endowment. Since B°(p) also allows
unbounded consumption, let x° be the plan of consuming 2/(1—p) each
period. This is feasible in both B%(p,) and B%(p). On the other hand, in B{(p,),
no more than 1/(1—p) may be consumed in any period, so x* is at least
1/(1—pB) from any point in B{(p,), showing that x* is not weakly
&,, &,-extensible for &, < 1/(1—p).

If x<—o0, we see that x%e B4(p,) is extensible to B{(p,) if and only if
xpyr2 —(1— B~ T)/(1—p), that is, no more debt has been incurred than can
be paid off. If —1=x<0, then this is implied by Xxj,r=x: in this case
enough consumption is available to pay off any feasible debt immediately.

Finally, suppose — oo <x< —1, and that T and ¢, are given. Observe that
if x4 € B%(p,), then for 1= 1>0 so is the plan x§=Ax% (since the plan x?=0 is
feasible). If xjpr<—(1—B " T)/1—p) (so x§ is not extensible), choose
A=(1—B"T)/(1+(1—PB)s;). We see that either xprr<—1/(1—p)—e;, in
which case x% is more than ¢, from any point in B%(p), or Xpm:2
—(1—=B"T)/(1—p), implying that x4 is extensible to Bf(p,). Furthermore, in
B%(p,), the fact that x?>x> — oo implies a number X (depending only on p)
so that |x?|<x for t(c)<T. It follows that max,g<r|x%—xir|S(1—AX. As
t— 00, 1—A-(1—B)e,;/[1+(1—P)s;] <¢&,. Consequently, for some T'>T and
t=T', 1—-1<¢,. For any given &,>0, we need only choose & <¢,/X, and we
find that B%(p,) is &;,¢,-extensible.

4. Finite horizon approximations to equilibrium

We now study the relationship between extensible equilibria in the infinite
horizon model, and those in finite horizon truncations of the model. Our
goal is to prove that infinite horizon equilibria can be completely character-
ized as limits of finite horizon equilibria.

Our first step is to show that B(p,) is lower hemi-continuous for each T.

Lemma 4.1. If p,—~p and x"€ B4(p), then there is x{ € B3(p,) with x{—x".
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Proof. This fact is also implicitly used by Radner (1972) in his outline of an
existence proof when there are multiple budget constraints; the proof is a
minor variation on Debreu’s (1959) proof with a single budget constraint. In
case x° strictly satisfies the many budget and short sales constraints, the
proof is trivial. If only the short sales constraints bind, this follows directly
from the assumption that x? is lower hemi-continuous in p. Otherwise, let
% x satisfy X¢e X2(p,) for t(s') t(s). Then, like Debreu, we draw a straight
line between %2, and the interior plan and take x{ to be the point where this
line first exactly satisfies all of the binding budget constraints at the prices

D:- O

Next, we must give a transversality condition linking equilibrium holding
of claims to the weights ¢%. Let B® be a closed convex subset of R”. For
given weights, define y5(¢%, B%) to be the minimum of Y o<1 dorxe subject to
x“e B®. The sequence of weights ¢ satisfy the transversality condition with
respect to the sequence of budget constraints B and plans x7 provided that

Y. O4xir— (9%, ) Ser where  lim er=0. 4.1

He)=T T— o0

In case B%=B%py), we refer to this as the weak transversality condition; if
@ = B%(p,) (a larger set), we refer to this as the strong transversality
condition.
Our goal is to prove.

Theorem 4.2. A triple %, § and p are an equilibrium if and only if they are the
limit (in the product topology) of strongly approximately extensible equilibria
%r, 97 and pp truncated with respect to X and weights ¢ which satisfy the
weak transversality condition.

We begin by proving that limits of truncated equilibria are equilibria.

Lemma 4.3. The limit %, 9, p in the product topology of equilibria Xy, 7 and
pr truncated with respect to X and ¢ are an equilibrium provided the strong
approximate extensibility condition and weak transversality condition are
satisfied, or the weak approximate extensibility condition and strong transversa-
lity condition are satisfied.

Proof. Convergence of %r, 57 and py in the product topology to %, § and p
means that £.,—X%,, 7,7—% and p.p—p, for each ¢ and s. It follows directly
that % is socially feasible at the prices p and by assumption it is individually
feasible. The fact that § maximizes profits at p and that % is optimal for any
finitely lived consumer is an immediate consequence of the fact that
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continuous finite horizon optimization problems are upper-hemi-continuous.
The crucial step is to show that X is optimal at p for an agent who
participates in infinitely many markets.

Suppose in fact that z°e B*(p) and U?(z*)= U*(%*)+ 6 where 6>0. Choose ¢
so that 9¢ <. Since U* is uniformly continuous in a uniformity consistent
with the product topology, we may choose T sufficiently large that if y° is
any plan satisfying the short sales constraints through T, and if 1> T

I U;‘(ya’ ias 0) - Ua(ya)l Se,
| U5(y*, 24,00 = Ug(y*, %0)| <e. 4.2)

Next we may choose t = T sufficiently large that
|Ug(%2, %, 0) — Ug(x%, %, 0)|<e, 4.3)

since X{—%® in the product topology and T is fixed. Since p,—p in the
product topology, by Lemma 4.1, we may also assume for any ¢, >0 and all
sufficiently large ¢ there is z% € B¥(p,) with

max |22y — 22| ey,
te)sT

| Uz, ,0)— Ut (2%, %, 0)| <&. (44)
We may also assume from (4.1) and 9¢ < that for all sufficiently large ¢
g, <0—9¢, 4.5)

where ¢, is from the transversality condition (4.1).

Finally, by approximate extensibility and (4.4), we may assume that ¢, and
t are chosen so that z% has an approximate extension z;eB{(p,) [and
consequently, z¢ e B4(p,)] with

|U%(2% %, 0) — U%(z2, %2, 0)| < 2e. (4.6)

Moreover, if the strong approximate extensibility condition is satisfied, we
may assume zi € B(p,). The derivation of (4.6) is the crucial step. Lemma 4.1
does not assert that we can find z¢e B4(p,) close to z°% it says only that for
fixed T that we can find z% € B%(p,), close to z°. However, we need the former
conclusion rather than the latter, because we do not know that x% is optimal
in B%(p,), while we do know that %7 is optimal in B{(p,).

As we just remarked, since p, and X, are a truncated equilibrium and
z; € B{(p,), it must be that
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Ui, X7, ¢8) 2 U(z7, X%, ¢7). (4.7)

We shall now show that (4.7) contradicts U%(z%) = U%(x") + 4.
From (4.6) and (4.2) we see that

]U‘,’(z“, 20— Ud(z, x° 0)|<4£ 4.8)
while from (4.3) and (4.2) we see that

|Us(z¢, %2,0)— Ug(x%, ¢, 0)| < 3e. 4.9
Moreover, U%z*) = U%%") +6 and (4.2) imply

Ua(z®, %2,0)— Uf(x%, X°,0) =0 — 2¢. (4.10)
Combining this with (4.8) and (4.9) yields

Ui(ze, x2,0)— Ug(x7,%%,0) =26 — 9. 4.11)
It follows that

Ui(zl, X, ¢7) — UL(RT, %5, )

=0—9¢+ Z ceZor ™ Z ¢gt5€?t

te) st tc) =t

20—-9e+ (97, B — Y, daki (4.12)

tic)<t

where if the strong approximate extensibility condition is satisfied z; € B*(p,),
and we may take B®=B%p,); otherwise we know only that z/e Bf(p,) and
must take B®=B%p,). From the appropriate transversality condition (4.1) we
have

U428, %% ¢7) — U2, %%, ¢f) 28 — 95 —¢,>0, (4.13)
with the final inequality from (4.5). This, however, contradicts (4.7). O

It is important to point out that in this discussion we need not consider
sequences T=1,2,...,but only subsequences T=ty,t5,...,L;..., where t;, >
t;and i=1,2,.

An 1mportant aspect of this theorem is the interplay between the extensibi-
lity and transversality conditions: the stronger the extensibility, the weaker
the transversality that is needed. This will be important below. In many
respects the strong extensibility condition is unnatural. The prices after T in

J.Math— D
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the truncated equilibrium are irrelevant to that equilibrium. Consequently,
the strong extensibility condition requires that there be some prices after T
such that at those prices everyone can find an extension. However, the weak
and not the strong transversality condition is all that is guaranteed to be
necessary, so the strong approximate extensibility condition is the one that is
both necessary and sufficient.

Next we prove that every equilibrium is the limit of truncated equilibria.

Lemma 44. If %, 9 and p are an equilibrium, then they are the limit in the
product topology of strongly approximately extensible equilibria Xy, 91 and pr
truncated with respect to X and weights ¢ that satisfy the weak transversality
condition.
Proof. Given an equilibrium %, §, p and a truncation date 7, we must
construct Xy, 71, Pr, together with a truncation plan % and weights ¢y which
are a truncated equilibrium and satisfy the transversality condition. We take
the truncated plans and prices to be the same as the equilibrium plans,
Xr=X, §r="%, pr=p, X=%, and show how to construct weights which satisfy
the transversality condition. Notice that the proposed truncated equilibrium
is obviously both socially and individually feasible, and that profits are at a
maximum. As we noted above the fact that the truncated equilibria are
strongly approximately extensible follows from the fact that the sequence pr
is constant. What we must show is that, relative to the weights we construct,
agents are indeed maximizing their truncated utility.

The method of finding truncation weights is closely related to the dynamic
programming method used by Weitzman (1973) in establishing a similar
transversality condition in a somewhat simpler model. Let

Q= {(0)yo s 7|35 € BY(P), x* € B(p), wl=x{—%¢}.

Notice that this is a convex subset of a finite dimensional space. Define V7.
Q‘;-—»R by

4 (%) =max U%(X% x%0),
x‘e Bp), x°eB(p),
X —f<wh, Ho)<T. (4.14)
Since B%(p) and B%(p) are convex sets, this is a concave function. Notice also,
by the monotonicity assumptions A.1, A.2 and A.4, that an argmax satisfying

x*— %=, for t(c)< T always exists. Moreover, since by assumption there is
a j°«x° that satisfies all the short sales constraints strictly. Since x* exactly
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satisfies the budget constraints, 7 strictly satisfies them. It follows that
Oeinterior (). Consequently, there are weights @7 (non-negative by
monotonicity and free disposal) such that

Vi)~ Y e 2VT0). (4.15)

tc) €T
Since %* maximizes U® in B(p)
2(0)= U“(x*). (4.16)

First set the plan after T, x“=3x" consider any e B%(p), and let
?=%%—x2. Then, by definition of V7,

2(w") = UL(X4,%4,0).
We conclude from (4.15) and (4.16) that

Uz = V5(0) 2 U, %%,0) = 3. ¢er(%—X0),

te})sT

or, in other words,

<U“(fc")+ » ¢:'ch“>—< 2% 3,0+ Y ms)go,

HOST HO)ST

so % is in fact optimal relative to the weights @7.
Next, set ¥2=2° and o?=x%—x2. Then, by the definition of V¢,

Vi{(w") 2 U(x4, x%,0).

We conclude from (4.15) and (4.16) that
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U“x") =VH0) 2 UL x%,0)— Y, ¢ip(x¢—30),
te)sT

or, in other words,

erZ UYR") —Ug(¥,x%,002 Y, ¢ir(%e—x?).
H)ST

Since U* is continuous in the product topology we may assume &;—0. Since
this holds for all x®e B*(p), by setting B} =B%p) and letting Y <1 Porx?—
X7(9%, Bt), we get

er2 Z Oerie—x1(é%, BY).
He) ST

Notice that since x®e B°(p), this is the weak rather than strong transversality
condition. O

5. Conclusion

Let us sum up by considering conditions under which we could ensure the
existence of infinite horizon equilibria. To prove existence, we should show
that truncated equilibria exist, and that there is a convergent sequence of
truncated equilibria that is (weakly) approximately extensible.

The problem of finite horizon existence with incomplete markets has
primarily been studied when there is no production and markets form a tree.
If all assets return the same mix of good or money in a particular market,
Werner (1985), Duffie (1987), Geanakoplos and Mas-Colell (1989), and
Geanakoplos and Polemarchakis (1986) have shown in this model that there
is a truncated equilibrium in which short sales constraints can be chosen not
to bind. Without the special assumption on asset returns, Hart (1975)
showed that there may be no equilibrium. However, Duffie and Shafer (1985,
1986) show that even in this case an equilibrium exists in a generic economy.
More useful for the setup here is Radner’s (1972) result, showing that we can
dispense with special return structure assumptions and generic economies if
we take short sales constraints such that asset holding is bounded below. In
the infinite horizon, short sale restrictions also help prevent Ponzi schemes.

The simplest approach to approximate extensibility is to impose conditions
which guarantee that every equilibrium is extensible. Suppose that if short
sales constraints are satisfied prior to a certain time T, then if the period T
portfolio is rolled to period T+ 1 they are satisfied again without trading.
For example, since rates of return are non-negative, this is true if the only
short sales constraints are that non-negative amounts of every claim must be
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held in every market. In this case, since passive rolling over of the portfolio
automatically satisfies the budget constraint, budget constraints are exten-
sible, regardless of prices. The case of non-negativity restrictions is important
in practice: this is the type of restriction in the Bewley money model, for
example. |

The condition requiring the feasibility of rolling over the portfolio can be
weakened if a priori bounds on relative prices can be established. Suppose,
for example, that there are two consumption goods, food and shelter.
Suppose that bonds pay off in food only, and consider an agent whose
endowment consists only of shelter, not food. If this individual sells bonds
short, he must trade in order to have non-negative food holdings in the next
period. If we can establish a priori using the marginal conditions for food
and shelter an equilibrium bound on the relative price of food to shelter, the
agent is guaranteed that he can trade his shelter for a minimum amount of
food, and use this to support short sales of bonds. In this case also, the
budget constraint, at equilibrium prices, will be extensible.
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