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ABSTRACT_____________________________________________________________________ 

Typical models of bankruptcy and collateral rely on incomplete asset markets.  In fact, bankruptcy 
and collateral add contingencies to asset markets.  In some models, these contingencies can be 
used by consumers to achieve the same equilibrium allocations as in models with complete 
markets.  In particular, the equilibrium allocation in the debt constrained model of Kehoe and 
Levine (2001) can be implemented in a model with bankruptcy and collateral.  The equilibrium 
allocation is constrained efficient. Bankruptcy occurs when consumers receive low income shocks.  
The implementation of the debt constrained allocation in a model with bankruptcy and collateral is 
fragile in the sense of Leijonhufvud’s “corridor of stability,” however:  If the environment 
changes, the equilibrium allocation is no longer constrained efficient. 
_______________________________________________________________________________ 
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at UCLA, 30–31 August 2006.  The authors are grateful for financial support from the National 
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The absence of private information implies that no consumer actually goes bankrupt in 

equilibrium: the credit agency will never lend so much to consumers that they will choose 

bankruptcy.  This is very unlike … incomplete markets bankruptcy models. (Kehoe and Levine 

2001) 

1. Introduction: “A foolish consistency is the hobgoblin of little minds”1 

General equilibrium models of bankruptcy have generally taken the perspective that 

bankruptcy is observed in the world, and so general equilibrium models should attempt to 

account for it.  This point of view is very much in the spirit of the incomplete markets models on 

which these models are based.  The theoretical literature on equilibria with incomplete markets 

and bankruptcy includes Araujo, Páscoa, and Torres-Martínez (2002), Dubey, Geanakoplos, and 

Zame (1995), Dubey, Geanakoplos and Shubik (1989), Geanakoplos and Zame (2002), Kubler 

and Schmedders, (2003), Orrillo (2002), and Zame (1993).  Recently papers by Chatterjee, 

Corbae, Nakajima, and Ríos-Rull (2004) and Livshits, MacGee, and Tertilt (2003) have 

constructed models with incomplete markets and bankruptcy, calibrated them to data, and used 

them to address policy issues.  These models only partially address some fundamental questions:  

Why should bankruptcy be allowed?  What underlying economic fundamentals lead to particular 

types of bankruptcy? 

The enforcement constraint models of Kehoe and Levine (1993, 2001) and others attempt 

to answer the question of why we observe incomplete markets for insurance.  The answer given 

is that not all profitable transactions can be carried out because some would violate the 

individual rationality constraint that under some circumstances it would be better to “run away” 

than to pay an existing debt.  This links insurance possibilities to economic fundamentals. 

This paper is an approach to bankruptcy and collateral based on these enforcement 

constraint models.  Although, as the authors observed in the quotation above, no consumer 

actually runs away in equilibrium, we argue here that “running away” is not the proper 

interpretation of bankruptcy.  Rather, the Kehoe-Levine enforcement constraint model requires 

complete contingent claims, and, in practice, these claims are implemented not through Arrow 

securities, but rather through a combination of non-contingent assets and bankruptcy.  With this 

in mind, we reexamine the example of Kehoe and Levine (2001) and show how the efficient —  

                                                 
1 With the exception of this opening quotation from Ralph Waldo Emerson’s “Self Reliance,” the quotations at the 
beginning of sections are all taken from Axel Leijonhufvud’s (1973b) “Life among the Econ.” 
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that is, second best — stationary equilibrium allocation can be implemented in an equilibrium 

without contingent claims, but with bankruptcy and collateral. 

This reinterpretation brings new economic insight.  If the model has consequences for 

unanticipated shocks, then the institution of bankruptcy and collateral that may be well suited for 

“ordinary” shocks may break down when subject to unusual shocks.  This is closely related to 

Leijonhufvud’s (1973a) “corridor of stability.”  Our perspective, then, is quite different from that 

in the incomplete markets literature or that in the work of Kiyotaki and Moore (1997).  In those 

models, it is hypothesized that bankruptcy and collateral are an inefficient solution to a not 

completely well-specified economic problem.  Here we view bankruptcy and collateral as an 

efficient solution to the problems posed by ordinary transactions.  We also recognize that 

solutions that may suit ordinary events well, however, may be fragile when exposed to less 

ordinary events. 

2. A modl “finely carved from the bones of Walras” 

We start by summarizing the model of Kehoe and Levine (2001).  There are an infinite 

number of discrete time periods 0,1,t = … .  In each period there are two types of consumers, 

1, 2i = , and a continuum of each type of consumer.  At each moment of time, one consumer has 

high productivity and one has low productivity.  The state {1,2}tη ∈  at time t  is the index of the 

consumer who has high productivity at that time.  This random variable follows a Markov 

process characterized by a single number 0 1π< < , the probability of a reversal, that is, a 

transition from the state where type 1 has good productivity to the state where type 2 has good 

productivity, or vice versa.  

Uncertainty evolves over an uncertainty tree.  The root of the tree is determined by the 

fixed initial state 0η .  A state history is a finite list 1( , , )ts η η= …  of events that have taken place 

through time ( )t s , where ( )t s  is the length of the vector s , the time at which s  occurs.  The 

history immediately prior to s  is denoted 1s − , and if the node σ  follows s  on the uncertainty 

tree, we write sσ > .  The countable set of all state histories is denoted S .  The probability of a 

state history is computed from the Markov transition probabilities 

 ( ) ( ) 1 ( ) 1 ( ) 2 1 0( | ) ( | ) ( | )s t s t s t s t spr pr prπ η η η η η η− − −= " . (1)  
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There is a single consumption good c ;  the representative consumer of type i  consumes 
i
sc  if the state history is s .  Both consumers have the common stationary additively separable 

expected utility function 

 ( )(1 ) ( )t s i
s ss S
u cβ β π

∈
− ∑ . (2) 

The period utility function u  is twice continuously differentiable with ( ) 0Du c > , satisfies the 

boundary condition ( )Du c →∞  as 0c → , and has 2 ( ) 0D u c < .  The common discount factor β  

satisfies 0 1β< < . 

 There are two types of capital:  human capital (or labor) and physical capital (or trees).  

The services of the one unit of human capital held by type i  consumer in state η  are denoted 

( )iw η .  These services take on one of two values, bω  and gω , with b gω ω< , corresponding to 

low and high productivity, respectively.  Moreover, if one consumer has high productivity, then 

the other consumer has low productivity, so if i b
tw ω=  then i g

tw ω− = , where i−  is the type of 

consumer who is not type i .  Finally, the state indexes which consumer has high productivity, so 

( ) gηω η ω= , ( ) bηω η ω− = . 

 There is one unit of physical capital in the economy.  This capital is durable and returns 

0r >  of the consumption good in every period.  We can interpret this physical capital as trees, 

with r  being the amount of consumption good produced every period by the trees.  A consumer 

of type i  holds a share i
sθ  of the capital stock contingent on the state history s .  Initial physical 

capital holdings are 0
iθ . 

The total supply of the consumption good in this economy is the sum of the individuals’ 

productivities plus the return on the single unit of physical capital, g b rω ω ω= + + .  The social 

feasibility conditions for this economy in each state are  

 1 2 g b
s sc c rω ω ω+ ≤ + + =  (3) 

 1 2 1s sθ θ+ ≤ . (4) 
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3. The debt constrained economy: “Venturing stark naked out into the chill winds of 

abstraction” 

Our first model of intertemporal trade is the debt constrained economy.  Borrowing, 

lending, and the sale and purchase of insurance contracts are possible.  There are, however, debt 

constraints.  These come about because consumers have the option of opting out of intertemporal 

trade.  If they choose to do this, they renege on all existing debts.  They are excluded from all 

further participation in intertemporal trade, however, and their physical capital is seized.  The 

endowment of human capital is assumed to be inalienable:  it cannot be taken away, nor can 

consumers be prevented from consuming its returns.  

Formally, this is a model in which consumers face the individual rationality constraint 

 ( ) ( ) ( ) ( )(1 ) ( / ) ( ) (1 ) ( / ) ( ( )).t t s i t t s i
s ss s

u c u wσ σ
σ σ σ σσ σ

β β π π β β π π η− −
≥ ≥

− ≥ −∑ ∑  (5) 

This constraint says that, in every state history, the value of continuing to participate in the 

economy is no less than the value of dropping out.  

 In this debt constrained economy, since markets are complete, consumers purchase 

contingent consumption for the state history s  for the present value price sp  and they sell the 

return on their capital 0( )i i
sw rη θ+  at the same price.  The corresponding optimization problem is 

0
max (1 ) ( )t i

tt
u cβ β∞

=
− ∑  

subject to 

 0( ( ) )i i i
s s s ss S s S

p c p w rη θ
∈ ∈

≤ +∑ ∑  (6) 

( ) ( ) ( ) ( )(1 ) ( / ) ( ) (1 ) ( / ) ( ( ))t t s i t t s i
s ss s

u c u wσ σ
σ σ σ σσ σ

β β π π β β π π η− −
≥ ≥

− ≥ −∑ ∑ . 

Notice that we have written the budget constraint in the Arrow-Debreu form.  As is usual in this 

sort of model, we can equally well formulate the budget constraint as a sequence of budget 

constraints in complete securities markets,   

 ( ,1) ( ,1) ( ,2) ( ,2) ( ) ( )i i i i i
s s s s s s s sc q q w v rθ θ η θ+ + ≤ + +  (7) 

i
sθ ≥ −Θ , 0

iθ  fixed, 
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where ( , )sq η  is the price of the Arrow security traded in state history s that promises a unit of 

physical capital to be delivered at state history ( , )s η .  A standard arbitrage argument implies that 

( ,1) ( ,2)s s sq q v+ = .  The constraint i
sθ ≥ −Θ  rules out Ponzi schemes, but Θ  is a positive constant 

chosen large enough not to otherwise constrain borrowing in equilibrium.  

 An equilibrium of the debt constrained economy is an infinite sequence of consumption 

levels and consumption prices such that consumers maximize utility given their constraints and 

such that the social feasibility condition for consumption is satisfied. 

 A symmetric stochastic steady state satisfies the equilibrium conditions for an appropriate 

choice of initial capital holdings 1
0θ  and 2

0θ   and is specified by consumption gc  when 

productivity is high, bc  when productivity is low, and the rule 

 
if 
if 

g i g
i s
s b i b

s

c w
c

c w
ω
ω

⎧ =
= ⎨

=⎩
. (8) 

Kehoe and Levine (2001) prove that every stochastic steady state in which the individual 

rationality constraint binds on at least one consumer type is symmetric.  They also analyze 

transition paths and prove that the equilibrium reaches the stochastic steady state as soon as a 

reversal has taken place.   

4. Solution of the debt constrained model 

We find the symmetric stochastic steady state by decreasing gc  from gω  until we either 

achieve the symmetric first best at / 2gx ω=  or until the individual rationality constraint binds.  

We define a function proportional to the difference between the utility from the steady state 

consumption plan and consumption in autarky.  A recursive calculation shows that this function 

is 

 ( )( ) ( )( ) 1 (1 ) ( ) ( ) ( ) ( )D g g g g bf c u c u u c uβ π ω βπ ω ω= − − − + − − , (9) 

where b gc xω= − . 
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Proposition 1:  A symmetric stochastic steady state gc  of the debt constrained economy is 

characterized by ( / 2) 0Df ω ≥  and / 2gc ω=  or by / 2gω ω> , ( ) 0D gf c = , and 

( / 2, )g gc ω ω∈ . 

The function Df  is concave and satisfies ( ) 0D gf ω > .  Observe first that / 2gω ω≤  

implies that ( / 2) 0Df ω > .  Either ( / 2) 0Df ω ≥  or ( / 2) 0Df ω < .  If ( / 2) 0Df ω ≥ , then 

( ) 0D gf ω > and the concavity of Df  imply that ( ) 0Df c >  for all [ / 2, ]gc ω ω∈ .  Consequently, 

the unique steady state is characterized by / 2gc ω= .  If, instead, ( / 2) 0Df ω < , then / 2gω ω> .  

In this case, ( ) 0D gf ω > and the concavity of Df  imply that ( ) 0D gf c =  for a unique 

( / 2, )g gc ω ω∈ .      

Proposition 2:  A symmetric stochastic steady state exists in the debt constrained economy.  

There is only one symmetric stochastic steady state. 

 An interesting question is how the steady state level of consumption depends on the 

parameter 1 π−  measuring the persistence of the shock.  From the implicit function theorem, in 

the case where the debt constraint binds, we can compute 

 /
(1 ) /

g D

D g

dc f
d f c

∂ ∂π
π ∂ ∂

=
−

. (10) 

At an interior steady state Df  must intersect the axis from below, so /D gf c∂ ∂  is positive.  We 

can also rewrite Df  as 

 ( ) ( )( ) (1 ) ( ) ( ) ( ) ( ) ( ) ( )D g g g g b g gf c u c u u c u u c uβ ω βπ ω ω ω= − − + − − + − . (11) 

When ( ) 0D gf c = , since the first term is negative, the second term is positive, and since 

/Df∂ ∂π  is proportional to the second term, it is also positive.  We conclude that 

 0
(1 )

gdc
d π

>
−

, (12) 

implying that a more persistent shock results in greater consumption by the consumer with the 

high endowment, or, equivalently, less risk sharing between the two consumers. 
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5. A numerical example 

To see how the equilibrium works in more detail, we examine a numerical example.  We 

suppose that the discount factor is 4 / 5β = , that the probability of reversal is 1/ 8π = , and that 

the endowments are  

 
54 if 
8 if 

ti
s

t

i
w

i
η
η

=⎧
= ⎨ ≠⎩

. (13) 

There is a single unit of physical capital that produces 1 r =  unit of the good every period. 

The first-order conditions for the consumer’s problem are 

 ( ) ( )1 1 0t s i t s i
s s si i s

s sc c σσ
β π λ β π µ

≤
− + =∑  (14) 

and 

 ( , ') ( , ') ( , ')( ) 0i i
s s s sq v rη η ηλ λ− + + = , (15) 

where i
sλ  is the Lagrange multiplier for the sequential markets budget constraint (7) for 

consumer type i  in state history s  and i
sµ  is the Lagrange multiplier for the individual 

rationality constraint (5). 

If ( , ')
i b
sc cη = , then the individual rationality constraint does not bind and ( , ') 0i

s ηµ = .  First, 

consider the case where i g
sc c=  and ( , ')

i
sc η  is bc .  Then, since ( , ') 0i

s ηµ = , we can write the first-

order condition for ( , )
i
sc η as 

 ( ) 1 ( ) 1
( , ')

1 1 0t s i t s i
s s sb b sc cη σσ

β π π λ β π π µ+ +
≤

− + =∑ . (16) 

Combining this with the first-order condition for i
sc , (14), we obtain 

 ( , ')

( , ')

'( )
'( )

g
s

b
s

v ru c
u c q

η

ηδπ
+

= . (17) 

We construct an equilibrium assuming that capital prices are constant, ( , ')sv vη = .  Kehoe and 

Levine (2001) prove that this is the only possibility.   

The first-order condition (15) becomes  
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 ( )( , ')
'( )

'( )

b

s r g

u cq q v r
u cη

βπ
= = + . (18) 

Here rq  is the price paid for an Arrow security to purchase one unit of physical capital in the 

case of reversal — where 1sη = , for example, but ' 2η = .   

Consider now the case where i b
sc c=  and ( , ')

i
sc η  is bc .  (We can think of this as the same 

state history s ; we are just looking at the other consumer type’s first-order conditions.)  We 

obtain 

 
( )

'( )
1 '( )

b

b
n

u c v r
u c qδ π

+
=

−
 (19) 

where 

 ( )( )1nq v rβ π= − + . (20) 

Here nq  is the price paid for an Arrow security to purchase one unit of physical capital in the 

case of no reversal.   

Consider now that the function  

 ( )( ) ( )( ) 1 (1 ) log log54 log(63 ) log8D g g gf c c cβ π βπ= − − − + − −  (21) 

Setting ( ) 0D gf c = , where 4 / 5β =  and 1/ 8π = , we obtain 36gc = .  We want to find values of 
bc , gθ , bθ , rq , nq , and v  such that these variables constitute a symmetric steady state.  

Obviously, 63 36 27bc = − = .  Plugging these values into the first-order conditions (18) and (20), 

we find that 

 ( )2 1
15rq v= +  (22) 

 ( )7 1
10nq v= + . (23) 

Notice that we can combine these two conditions to obtain 

 ( )5 1
6r nq q v v+ = = + , (24)  
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which implies that 5v = , 4 / 5 0.8rq = = , 21/ 5 4.2nq = = .  We can plug this into the budget 

constraint for the consumer with the high endowment, 

 ( )g g b g g
n rc q q v rθ θ ω θ+ + = + +  (25) 

 ( )21 436 1 54 6
5 5

g g gθ θ θ+ + − = + , (26) 

to solve for 86 /13 6.6154gθ = − = − , 99 /13 7.6154bθ = = .   

To implement this steady state as an equilibrium, we can now go back and verify that all 

of the equilibrium conditions are satisfied for the right choice of 1
0θ  and 2

0θ .   

The comparative statics of this example are of some interest.  Suppose that we increase 

the variance of shocks by increasing ( , )g bω ω  from (54, 8) to say (56, 6), and then to (58, 4).  A 

computation along the lines above shows that the equilibrium risk sharing increases as the 

variance of the shocks becomes larger:  ( , )g bc c  goes from (36, 27) to (32.6074, 30.3926) and 

then to (31.5, 31.5), where there is complete risk sharing.  As we decrease the variance of 

shocks, equilibrium risk sharing decreases:  as ( , )g bω ω  goes to (52, 10) and then to (50, 12), 

( , )g bc c  goes to (38.6539, 24.3461) and then to (40.6209, 22.3791).  Notice that increasing the 

variance of the shock reduces the attractiveness of running away and increases the desirability of 

trade. That is, we should not interpret this as meaning the economy as a whole has become more 

risky, but rather that the economy as a whole has become more specialized and interdependent. 

Because it is less attractive to run away, it becomes possible to enforce more efficient risk 

sharing. 

This negative relation between the variance of income shocks and the level of risk 

sharing in equilibrium is a general feature of debt constrained models.  Krueger and Perri (2006) 

study the empirical significance of this relation. 

6. The economy with bankruptcy and collateral:  “English words that have crept into 

their language are often used in senses that we would not recognize” 

In this section, we show that, when the individual rationality constraint (5)  holds, we can 

support the equilibrium allocation in the debt constrained economy by a combination of 

bankruptcy and collateral.  The possibility of bankruptcy provides a state contingency.  The basic 
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idea is that in every period each type makes a loan to the other type.   Then the consumers of 

whichever type has low productivity in the next period default on their loans — that is, they 

collect the promised payment from the other type, but they do not pay back their own loan.  

Bankruptcy comes with a penalty:  a consumer who defaults loses any holdings of physical 

capital and — to prevent consumers who have high productivity from defaulting — loses the 

returns to labor in excess of bω .  We impose a constraint on borrowing to ensure that consumers 

do not borrow so much that they violate the individual rationality constraint (5).  Notice that the 

imposition of this constraint makes it possible to impose the bankruptcy penalty of garnishing 

wages up to the level of bω :  the choices faced by the high productivity type are to not declare 

bankruptcy; to declare bankruptcy and pay the penalty; or to run away.  In equilibrium, the 

optimum among these three choices is to not declare bankruptcy. 

Let i
sb  denote borrowing by type i  in state history s  and let i

sa  denote lending.  Because 

the two types have different probabilities of future default, borrowing and lending need not trade 

at the same price, so we let i
sq  denote the price of the asset corresponding to borrowing by type i  

in state history s . 

Consumers of type i  now face the problem 

( )(1 ) ( )t s i
s ss S
u cβ β π

∈
− ∑  

subject to 

 '
1 1 1( ) max[ ( ) , ( )]i i i i i i i i i i i b i

s s s s s s s s s s s s s sc q a q b v w a b v r wθ η δ θ ω η−
− − −+ − + ≤ + + − + + −  (27) 

0i
sa ≥ , 0i

sb b≥ ≥ , 0i
sθ ≥ , 0

iθ  fixed. 

There are two new market clearing conditions: 

 1 2 0s sa b− =  (28) 

 2 1 0s sa b− = . (29) 

The price of a claim to one unit of the income of consumer i  in state history s  is 

determined in 1s − , '
1

i
sq − .  The return on this claim depends on whether or not consumer i  

defaults: 
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( )

( , )

( , ) ( , )

1                                                 if ( ) ( )

( ) ( ) /    if ( ) ( )

i i b i
s s si

s i i b i i i b i
s s s s s s

b v r w

v r w b b v r w
η

η η

θ ω η
δ

θ η ω θ ω η

⎧ − + + ≥ −⎪= ⎨
+ + − − + + ≤ −⎪⎩

. (30) 

The concepts of equilibrium and of symmetric stochastic steady state for this economy 

with bankruptcy and collateral are defined analogously to their counterparts for the debt 

constrained economy. 

Proposition 3:  Given any symmetric stochastic steady state of the debt constrained economy, 

there exists a borrowing constraint 0b >  such that there is a symmetric stochastic steady state 

of the economy with bankruptcy and collateral with the same consumption allocation. 

Proof:  We explicitly construct the equilibrium.  In this equilibrium, consumers who have low 

productivity always declare bankruptcy and consumers who have high productivity never do.  

We use the first-order conditions for the consumer’s problem (27) along with the budget 

constraints and feasibility conditions to construct an equilibrium with these properties.   

We first need to determine which consumer purchases the capital.  If the consumer with 

the high productivity purchases the capital, the first-order condition is 

 (1 )( ) 0v v rβ π− + − + = , (31) 

which implies that 

 (1 )
1 (1 )

rv β π
β π
−

=
− −

. (32) 

The first-order condition for the consumer with low productivity is 

 ( ) 0b g

v v r
c c

βπ +
− + ≤ , (33) 

which holds if and only if 

 1g

b

c
c

π
π
−

≤ . (34) 

If, on the other hand, the consumer with low productivity purchases the capital, the first-order 

condition in (33) holds with equality, which implies that 
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g

b g

c rv
c c
βπ
βπ

=
−

. (35) 

In this case, the first-order condition for the consumer with high productivity is 

 (1 )( ) 0v v rβ π− + − + ≤ , (36) 

which holds if and only if the direction of the inequality (34) is reversed.  Consequently, we can 

divide equilibria into two types, along with a borderline case.  In the first type, condition (34) 

holds and the consumer with high productivity purchases all of the capital.   In the first type, 

condition (34) is violated and the consumer with low productivity purchases all of the capital.  If 

condition (34) holds with equality, it turns out that the two consumers can purchase capital in 

arbitrary amounts gθ , bθ  where 0iθ ≥ , 1g bθ θ+ = , without affecting the equilibrium 

allocation.  Notice that, in this borderline case, the two calculations of v , (32) and (35), coincide. 

To keep the exposition simple, we first consider the case where condition (34) holds.  We 

start by writing the budget constraints as 

 ( )g b g g g g g g b g bc q a q b v b v r b aω ω δ+ − + = − + + = − +  (37) 

 b g b b b b b b gc q a q b a aω ω+ − = + = + . (38) 

Notice that, although consumers’ consumption and asset accumulation depend only on the state 

in which they are, there are two ways to get to each state:  either a reversal has taken place or 

not.   

To construct the steady state equilibrium, we need to compute the asset prices gq  and bq , 

the lending levels ga  and ba , and the borrowing levels gb  and bb .  Notice that g ba v rδ = +  

implies that ( ) /g bv r aδ = + .   

A consumer who has high productivity pays b gq a  for a return of  ga  if a reversal takes 

place.  The corresponding first-order condition is 

 
b

g b

q
c c

βπ
= , (39) 

which implies that 
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g

b
b

cq
c

βπ
= . (40) 

A consumer who has low productivity lends g bq a  for a return of ba  if no reversal takes 

place and ( )g ba v rδ = +  if a reversal takes place.  The corresponding first-order condition is 

 (1 )g g

b b g

q
c c c

β π βπδ−
= + , (41) 

which implies that  

 (1 )
g b

g
g

cq
c

βπδβ π= − + . (42) 

Notice that the first-order condition for borrowing becomes 

 2 0
( )

b g

b g b g

q c
c c c c

βπ βπ βπ
− = − >  (43) 

when the consumer has low productivity and 

  2

(1 ) 0
( )

g g b

g g g

q c
c c c

β π βπδ−
− = > , (44) 

when the consumer has high productivity.  These conditions imply that the borrowing constraints 
i
sb b≥  bind.   

Combining the budget constraints (37) and (38) with the market clearing conditions for 

borrowing and lending (28) and (29), we find that 

 g g b ba b a b= = = . (45) 

We can easily calculate b  and set the borrowing constraint b b=  so that the budget constraints 

(37) and (38) are satisfied: 

 (1 )b g b bq q b c ω+ − = −  (46) 

 ( )1 (1 )
g b

b b
b g

c v r cb c
c c

βπ βπβ π ω
⎛ ⎞ +
+ − − − = −⎜ ⎟

⎝ ⎠
 (47) 
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( ) ( )1 (1 ) 1 (1 )

b b
b b

b g g

c rcb c
c c c

βπω
β π βπ β π

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− − + − −⎝ ⎠⎝ ⎠

. (48) 

It is straightforward, but tedious, to verify that a consumer with low productivity always 

chooses to default but that a consumer with high productivity never does. 

The construction where condition (34) is reversed is similar.  The budget constraints 

become 

 ( ) ( )g b g g g g g g g b g g b b g bc q a q b v b v r a b v r aθ ω θ δ ω θ δ+ − + = − + + + = − + + +  (49) 

 b g b b b b b b b gc q a q b v a aθ ω ω+ − + = + = + . (50) 

Here we treat the general case.  If (1 )g bc cπ π< − , then 1gθ = ; if  (1 )g bc cπ π< − , then 1bθ = ; 

and (1 )g bc cπ π= − , then gθ  is arbitrary.  Of course, ( )b g ba v rδ θ= +  and ( )g b ga v rδ θ= + .  

The asset prices bq  become 

  (1 )
g

b b
b

cq
c

βπ β π δ= + − , (51) 

 (1 )
g b

g
g

cq
c

βπδβ π= − + . (52) 

Once again, the first-order conditions for borrowing hold and g g b ba b a b= = = .  The calculation 

of b  becomes 

 (1 )b g b b bq q b c vω θ+ − = − +  (53) 

 
( )(1 ) ( )

1 (1 )
b g g bg

b b b
b g

c c v rc b c v
c c

β π θ πθβπ β π ω θ
− − +⎛ ⎞

+ − − + = − +⎜ ⎟
⎝ ⎠

 (54) 

 
( )

( )(1 ) ( )
1 (1 )

b g g bb
b b b

b g g

c c v rcb c v
c c c

β π θ πθ
ω θ

β π βπ

⎛ ⎞− − +⎛ ⎞
⎜ ⎟= − + −⎜ ⎟⎜ ⎟⎜ ⎟− − +⎝ ⎠⎝ ⎠

, (55) 

where v  is determined by equation (32) or equation (35) depending on the case that we are in.   

When (1 )g bc cπ π= − , this expression becomes 
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( )1 (1 )

g b
b b

g

c rb c
c

βπθω
β π

= − +
− −

. (56) 

Notice that, in this borderline case, the asset prices gq  and bq , the lending levels ga  and ba , and 

the borrowing levels gb  and bb  all vary with 1g bθ θ= − , but the consumption levels gc  and bc  

are fixed at their levels in the debt constrained equilibrium.  ■      

7. The numerical example revisited: “The ability to say the same thing in several different 

tongues is a highly esteemed talent among them” 

We now apply proposition 3 to show how the equilibrium allocation of the debt 

constrained economy in our numerical example can be implemented as an equilibrium allocation 

in the economy with bankruptcy and collateral.  We first use (48) to calculate the levels of 

borrowing and lending: 

 1155 44.4231
26

b = = . (57) 

Next, we use (32) to calculate the price of capital:  

 7 2.3333
3

v = = . (58) 

Notice that this implies that 

 52 0.0750
693

v r
b

δ +
= = = . (59) 

We can now use (40) and (42) to calculate the prices of claims on next period’s income: 

 2 0.1333
15

bq = =  (60) 

 163 0.7056
231

gq = = . (61) 

Kehoe and Levine (2001) provide a simple argument that demonstrates that the 

equilibrium allocation in the debt constrained model — and consequently the equilibrium 

allocation in this model with bankruptcy and collateral — is Pareto efficient among allocations 
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that satisfy the individual rationality constraint.  Notice how this allocation is supported by 

borrowing and lending assets with different returns.  Proposition 3, which shows that consumers 

can exploit the contingencies provided by collateral to achieve an efficient allocation, is 

reminiscent of results in finance, like those of Duffie and Huang (1985) and Kreps (1982), that 

show that a small number of assets can span the uncertainty facing investors.  What is important  

in our model is that the consumers can go long in some assets and short in others.  The efficient 

nature of the outcome turns the advice of Polonius to Laertes in Shakespeare’s Hamlet on its 

head:  “Both a borrower and a lender be.” 

Now consider the comparative static experiment of increasing specialization in the sense 

that the variance of shocks increases by changing ( , )g bω ω  from (54, 8) to (56, 6) and then to 

(58, 4), as we did in the market with complete contingent claims.  With complete contingent 

claims, we saw that equilibrium risk sharing increased as the variance of income shocks 

increased.  This cannot be the case with the model of bankruptcy and collateral:  the borrowing 

limit is calibrated to the old equilibrium, not the new, so it is impossible for the equilibrium to 

adjust in the short run.  In fact, equilibrium risk sharing goes down, as ( , )g bc c  goes from (36, 

27) to (37.4078, 25.5922) and then to (38.7722, 24.2278).  To achieve the same equilibrium 

allocation as in the debt constrained model, we would need to loosen the borrowing constraint b  

from 44.4231 to 60.6534 and then to 69.5833.   

More surprising perhaps is what happens if we decrease specialization in the sense that 

the variance of the shocks decreases by changing ( , )g bω ω  to (52, 10).  In this case the 

consumers with high productivity want to run away, and the equilibrium collapses to autarky.  

Even if we devise a scheme to keep consumers from running away in the Kehoe-Levine (2001) 

sense, we run into trouble as we decrease the variance of shocks still further by setting ( , )g bω ω  

to (50, 12).  In this case, even consumers with high productivity choose to default, and the 

equilibrium collapses to autarky. 

8. Leijonhufvudian Economics and the Economics of Leijonhufvud 

The literature on bankruptcy in general equilibrium typically takes the incomplete 

markets model as its point of departure.  In this model, bankruptcy — like the incomplete 

markets themselves — is a pathology.  Bankruptcy serves to solve no substantive economic 
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problem, and serves only to hinder the proper working of the economy.  The only conclusion we 

can sensibly reach from this literature is that the economy does not work well. 

The idea that on a day-to-day basis the economy works poorly is deeply anti-

Leijonhufvudian in spirit.  Leijonhufvud’s deepest insight is his (1973a) notion of the “corridor 

of stability.”  On a day-to-day basis in modern economies, things work well.  It is not plausible 

that we could all be much better off if not for the nasty facts of market incompleteness, 

bankruptcy, and collateral. 

This paper takes a point of view more consistent with Leijonhufvud’s corridor of 

stability.  Here borrowing limits, bankruptcy, and collateral arise to solve a real economic 

problem, that of providing insurance in the presence of individual rationality constraints.  In our 

account, this economy is second best: given the underlying individual rationality constraints, the 

equilibrium is the best possible. 

Having given a description of the corridor of stability where the economy responds 

efficiently to ordinary shocks, we are now free to ask the deeper Leijonhufvudian question:  How 

robust are the institutions of bankruptcy and collateral in responding to a shock for which they 

are not designed?  The answer is that these institutions are quite fragile. While the debt 

constrained complete market economy responds to changes in the variance of the shocks by 

adjusting the amount of risk sharing, the collateralized economy cannot adjust the risk sharing 

upwards in response to increased variance of shocks — and collapses completely in the face of 

decreased variance to shocks.  This latter point is of some interest: our general intuition is that 

reducing the variance of shocks should be a good thing.   
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