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Abstract:  This paper compares two different models in a common environment.  The

first model has liquidity constraints in that consumers save a single asset that they cannot

sell short.  The second model has debt constraints in that consumers cannot borrow so

much that they would want to default, but is otherwise a standard complete markets

model.  Both models share the features that individuals are unable to completely insure

against idiosyncratic shocks and that interest rates are lower than subjective discount

rates.  In a stochastic environment, the two models have quite different dynamic

properties, with the debt constrained model exhibiting simple stochastic steady states,

while the liquidity constrained model has greater persistence of shocks.
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1. Introduction

There is considerable empirical evidence that both individual consumers and larger

entities such as countries bear more idiosyncratic risk than is consistent with complete

and frictionless Arrow-Debreu markets.   Evidence at the level of the individual consumer

is discussed, for example, in Hayashi [1985] and Zeldes [1989], who show that individual

consumption is poorly correlated with aggregate consumption.  Evidence at the

international level is discussed, for example, in Backus, Kehoe, and Kydland [1992], who

point out the low correlation between consumption levels across countries.

That individuals bear idiosyncratic risk can be captured by many departures from

the Arrow-Debreu framework.  Three important examples of such models are incomplete

market models, where there are not enough securities to insure against all events; models

of liquidity constraints in which individual consumers are assumed unable to borrow as

much as they would like in loan markets; and models of adverse selection and moral

hazard.  Incomplete market models are discussed by Radner [1972], Hart [1975], and

Duffie and Shafer [1985], for example.  Examples of models of liquidity constraints can

be found in Bewley [1980], Dumas [1980], Townsend [1980], Scheinkman and Weiss

[1986], Abel [1990], Kehoe, Levine, and Woodford [1992] and Heaton and Lucas [1997].

Models of liquidity constraints typically involve incomplete markets, as not only are there

short sales constraints on securities, but securities are limited in number as well. These

papers have largely focused on the computation of special types of equilibria in

economies where the outside asset is a fiat money of no intrinsic value. In these equilibria

shocks have long term consequences.  We show that this is also the case in the

incomplete market model considered in this paper.

Models of adverse selection and moral hazard, with the notable exception of

Prescott and Townsend [1984], are not ordinarily general equilibrium models, so fall

outside the scope of this paper, but the interested reader should consult Green [1987] who

shows some of the links between asset market models and models of adverse selection.

Models with incomplete markets and/or liquidity constraints typically have the

properties that in equilibrium individuals bear idiosyncratic risk, and interest rates are

lower than subjective discount rates.  There is also a fourth model that shares these

properties: a model with individually rational debt constraints.  Here the setup differs



2

from that of Arrow-Debreu only in the assumption that a portion of the endowment is

inalienable and cannot be seized if a consumer goes bankrupt.  This model has been

studied by Schechtman and Escurdero [1977], Manuelli [1986], and Kehoe and Levine

[1993]. It has been applied to the study of existing asset markets by Alvarez and Jermann

[1997], Kehoe and Perri [1998], and Krueger and Perri [1998]. It is worth noting that

there are two distinct models of debt constraints: those in which traders can be excluded

from spot markets, or those, as in Kehoe and Levine [1993] where they cannot. The latter

possibility leads to a failure of the welfare theorems, and is conceptually more like the

incomplete market model. In the single good model studied here, and widely used in

finance, including the papers cited above, however, there is no spot market, and as a

result the welfare theorems hold.

This paper directly compares the debt constrained model to the incomplete

markets/liquidity constrained model in the same physical environment in which

consumers alternate either deterministically or randomly between having high and low

endowments.  The basic point is that the debt constrained model, largely because it

involves a much smaller departure from the Arrow-Debreu framework, leads to a vastly

simpler and more tractable model of equilibrium in the stochastic case, but nevertheless

incorporates the main features of equilibrium idiosyncratic risk bearing and interest rates

lower than subject discount rates.

2. The Environment

There are an infinite number of discrete time periods t = 0 1, ,K.   In each period

there are two types of consumers i = 1 2, , and a continuum of each type of consumer.

There is a single consumption good x; the representative consumer of type i consumes xt
i

in period t.  The infinite vector of consumption is ( , )x xi i
0 1K l∈ ∞

++ , where l∞
++  is the set of

sequences that are bounded and positive.  Both consumers have the common stationary

additively separable utility U x x u xi i t
t
i

t
( , ) ( ) ( )0 1 0

1K = − =
∞∑δ δ .  The period utility function

is twice continuously differentiable with Du x( ) > 0 , satisfies the boundary condition

Du x( ) → ∞  as x → 0 , and has D u x2 0( ) < .  The common discount factor δ  satisfies

0 1< <δ .

There are two types of capital: human capital (or labor) and physical capital (trees

or land).  The services of the (one unit of) human capital held by type i consumer in
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period t are denoted wt
i .  These services take on one of two values, ω b  and ω g , with

ω ωb g< , corresponding to bad and good productivity respectively.  Moreover, if one

consumer has good productivity, then the other consumer has bad productivity, so if

wt
i b= ω  then wt

i g− = ω  (where −i  is the type of consumer who is not type i).  We start by

assuming that productivity alternates between good and bad, so if wt
i g= ω  then

wt
i b
+ =1 ω .  Subsequently, we will allow for a more general process of randomly

switching between the two productivity pairs ( , ) ( , )w wt t
g b1 2 = ω ω  and

( , ) ( , )w wt t
b g1 2 = ω ω .

There is one unit of physical capital in the economy.  This capital is durable and

returns r > 0  of the consumption good in every period.  If r = 0 , physical capital would

be interpreted as fiat money, but we do not allow this case.  Since r > 0  we may interpret

physical capital as trees, with r being the amount of consumption good produced every

period by the trees.  A consumer of type i holds a share θ t
i  of the capital stock at the

beginning of time t.  Initial physical capital holdings are θ 0
i .

The total supply of the consumption good in this economy is the sum of the

individuals’ productivity, plus the return on the single unit of physical capital

ω ωg b r+ + .  We denote this aggregate supply as ω .  The social feasibility conditions for

this economy in each period are

x x rt t
g b1 2+ ≤ + + =ω ω ω

θ θt t
1 2 1+ ≤ .

3. Market Arrangements

In this physical environment, we consider two different models of intertemporal

trade.  In the liquidity constrained economy consumers can only carry out intertemporal

trade by exchanging real capital.  The consumption good is taken to be numeraire, and the

price of physical capital in period t is denoted by vt .  The objective of a consumer of type

i is to solve the problem

max ( ) ( )1
0

− =
∞∑δ δ t

t
i

t
u x

subject to
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The crucial feature of this model is that physical capital can be held only in

nonnegative amounts, and that there are no securities or other assets that can be traded

besides physical capital.  To understand this better, it is useful to think of trade as taking

place at different physical locations around the circle, as shown in Figure 1.  Only

consumers at the same location can trade; the measure of both types of consumers is the

same.  The type 1 consumers do not move, and type 2 consumers move counter-

clockwise.  The essential feature is that type 2 consumers move in such a fashion, say a

single radian each period, that they never return to the same location.  In this model,

intertemporal trade can be carried on only by exchanging physical capital, and physical

capital can not be held in negative quantities, so this explains both why there is only one

security, and why it cannot be sold short.  Later in the paper, we discuss the consequences

of allowing physical capital to be borrowed.

locations

arrows
denote

movement of
type 2

Figure 1

In the liquidity constrained economy, an equilibrium is an infinite sequence of

consumption levels, capital holdings, and capital prices such that consumers maximize

utility given their constraints, and such that the social feasibility conditions are satisfied.

The second model of intertemporal trade that we examine is the debt constrained

economy.  Here we allow borrowing and lending and, in the stochastic case that we

discuss later, the sale and purchase of insurance contracts.  There are, however, debt

constraints.  These come about because consumers have the option of going bankrupt, or
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otherwise opting out of intertemporal trade.  If they choose to do this, they renege on all

existing debts.  They are excluded from all further participation in intertemporal trade,

however, and their physical capital is seized.  The endowment of human capital is

assumed to be inalienable: it cannot be taken away, nor can consumers be prevented from

consuming its returns.  Notice that unlike the model of trading physical capital, which can

be completely decentralized, this model requires a credit agency, a government, or some

central authority to keep track of who has gone bankrupt and to assure that their capital is

seized and that they do not continue to borrow and lend.

Formally, this is a model in which consumers face the individual rationality

constraint

( ) ( ) ( ) ( )1 1− ≥ −−
=

∞ −
=

∞∑ ∑δ δ δ δτ
ττ

τ
ττ

t i

t

t i

t
u x u w .

This says that in every period, the value of continuing to participate in the economy is no

less than the value of dropping out.  In this setting, the absence of private information

implies that no consumer actually goes bankrupt in equilibrium: the credit agency will

never lend so much to consumers that they will choose bankruptcy.  This is very unlike

the incomplete markets bankruptcy models of Dubey, Geanakoplos, and Shubik  [1988]

and Zame [1993].

In this debt constrained economy, since markets are complete, consumers

purchase consumption in period t for pt  and they sell the return on their capital w rt
i i+ θ 0

at the same price.  The corresponding optimization problem is

max ( ) ( )1
0

− =
∞∑δ δ t

t
i

t
u x

subject to

p x p w rtt t
i

tt t
i i

=
∞

=
∞∑ ∑≤ +

0 0 0( )θ

( ) ( ) ( ) ( ), , ,1 1 0 1− ≥ − =−
=

∞ −
=

∞∑ ∑δ δ δ δτ
ττ

τ
ττ

t i
t

t i
t

u x u w t K

Notice that we have written the budget constraint in the Arrow-Debreu form.  As is usual

in this sort of model, and as we show formally in appendix, we can equally well

formulate the budget constraint as a sequence of complete securities markets,



6

x v w v r

t

t
i

t t
i

t
i

t t
i

t
i i

+ ≤ + +

≥ −
=

+θ θ
θ θ

1

0

0 1

( )

,

, ,

Θ  given

K

The constraint θ t
i ≥ −Θ  rules out Ponzi schemes, but unlike the liquidity constrained

economy where Θ = 0, here Θ  is a positive constant chosen large enough not to constrain

to borrowing.

An equilibrium of the debt constrained economy is an infinite sequence of

consumption levels and consumption prices such that consumers maximize utility given

their constraints and such that the social feasibility condition for consumption is satisfied.

We start by examining symmetric steady states of both the liquidity and the debt

constrained economy.  In a symmetric steady state

x
x w

x wt
i

g
t
i g

b
t
i b

=
=
=

%&'
if 

if 

ω
ω .

Because x xg b+ = ω , we can characterize consumption at a symmetric steady state by the

single number x g .  As is usual in steady state analysis, to implement the steady state as

an equilibrium, we must create a transfer payment between the consumers so that they

satisfy their budget constraints. Later we extend the analysis of the debt constrained

economy to more general dynamic equilibria.

4. Comparison of Liquidity and Debt Constrained Markets

We can now compare the steady state equilibria of the liquidity and debt

constrained economies.  Throughout the analysis we use first order Euler conditions to

characterize the optimum of the consumer. It is well known that, together with a

transversality condition, the Euler conditions are necessary and sufficient for a path to be

an optimum. See Scheinkman [1976] and Araujo and Scheinkman [1977]. These same

papers show that the transversality condition is satisfied if the path is bounded. In our

analysis, the paths we study all converge to (or even begin at) a steady state, so they are

bounded. As a result we focus our analysis on the first order conditions.

We begin by characterizing equilibria in the liquidity constrained economy. In this

economy, x g  is determined by the fact that the consumer with good productivity is free to

purchase as much physical capital as he wishes from the consumer with bad productivity.

His marginal utility in the current period is Du x g( ) , while next period he will have bad
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productivity, and marginal utility Du x Du xb g( ) ( )= −ω .  Consequently, the first order

condition for the consumer’s maximization problem can be written as

Du x

Du x

v r

v

g

g
t

t

( )

( )ω
δ

−
= ++1 .

In the appendix we show that any equilibrium prices v v0 1, K satisfying these equations

must be bounded as well.  Simple algebraic manipulation then implies that, if vt � 0  for

all t, then v vt =  for all t.

The three conditions that must be satisfied are the budget constraints in the good

and bad state, and the first order condition in the good state

x v v r

x v v r

Du x v Du x v r

g g g b

b b b g

g g

+ = + +
+ = + +

= − +

θ ω θ
θ ω θ

δ ω

( )

( )

( ) ( )( ).

Multiplying the first equation by Du x g( )  and the second by δ ωDu x g( )− , we use

θ θg b+ = 1 and x xg b+ = ω  to find

Du x x Du x x

Du x v Du x v r

Du x v r Du x v r

g g g g g g b

g g

g b g b

( )( ) ( )( )

( ) ( )( )

( )( ) ( )( ) .

- + - - - =

- + - +
+ + - - +

w d w w w

d w
q d w q2 2

Substituting the first order for the good state into the right hand side of this equation, we

obtain

Du x x Du x x

Du x Du x r

g g g g g g b

g g b

( )( ) ( )( )

( ) ( ) .

- + - - - =

+ -

w d w w w

d w q2 7
It is convenient to define

f x Du x x Du x xL g g g g g g b( ) ( )( ) ( )( )= − + − − −ω δ ω ω ω .

There are two possibilities: either θ b > 0 at x g = ω / 2 or θ b = 0 for x g g∈[ / , ]ω ω2 . In

the latter case, we have f xL g( ) = 0 . In the former case, f L ( / )w 2 0� .

We have demonstrated the following result.

Proposition 1: A symmetric steady state x g  of the liquidity constrained economy is

characterized by

f L ( / )w 2 0�  and x g = ω / 2  or
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ω ωg > / 2 , f xL g( ) = 0  and x g g∈[ / , ]ω ω2 .

We turn next to the debt constrained economy.  We define the consumption set for

each individual to be the set of nonnegative consumption plans that are individually

rational.  Given this definition, the model is a standard complete markets model with a

finite number of consumer types.  The standard argument implies that the equilibrium is

Pareto efficient: Suppose, to the contrary that there exists an alternative allocation that is

feasible, satisfies the individual rationality constraints, yields at least as much utility to

both consumers, and yields strictly more utility to at least one consumer. Then this

alternative allocation must assign to the consumer that is strictly better off a consumption

bundle that costs strictly more than his endowment at the equilibrium prices,

p x p w rtt t
i

tt t
i i

=

∞

=

∞∑ ∑> +
0 0 0

~ ( )θ .

Furthermore, it must assign the other consumer a consumption bundle that costs at least

as much as his endowment because, if it assigns a consumption bundle that costs strictly

less, the consumer could spend the extra income, make himself better off, and not violate

his individual rationality constraint,

p x p w rtt t
i

tt t
i i

=

∞

=

∞∑ ∑≥ +
0 0 0

~ ( )θ .

Together, these two conditions imply that the alternative allocation costs more than the

aggregate endowment.

p x x ptt t t tt=

∞

=

∞∑ ∑+ >
0

1 2

0
(~ ~ ) .ω

As in the model without debt constraints, this implies that the alternative allocation

cannot be feasible, which contradicts the assumption that there is a Pareto superior

allocation.

Proposition 2: An equilibrium allocation in the debt constrained economy is Pareto

efficient.

In a symmetric steady state, the first best is to equalize consumption between the

two consumers, x g = ω / 2 .  It may be impossible to reach this allocation without
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violating the individual rationality constraint, however.  To achieve a Pareto improvement

over autarky using a stationary allocation, consumption must be transferred from the

consumer with good productivity to the consumer with bad productivity. Eventually, the

individual rationality constraint for the consumer with good productivity may be violated:

the consumer with good productivity would prefer to declare bankruptcy rather than to

make the transfer.  We conclude that, if consumption between the two consumers is not

equalized, then the individual rationality constraint for the consumer with good

productivity must bind exactly.  The utility that the consumer with good productivity

receives in equilibrium is proportional to u x u xg g( ) ( )+ −δ ω ; the utility he would have

received from his endowment is proportional to u ug b( ) ( )ω δ ω+ .  If we define

f x u x u u x uD g g g g b( ) ( ) ( ) ( ) ( )= − + − −ω δ ω ω2 7 ,

then the exact binding of the individual rationality constraint can be written f xD g( ) = 0 .

We can summarize this discussion.

Proposition 3: A symmetric steady state x g  of the debt constrained economy is

characterized by

f D( / )ω 2 0≥  and x g = ω / 2  or

ω ωg > / 2 , f xD g( ) = 0  and x g g∈[ / , ]ω ω2 .

We can now compare steady states of the two models by studying the functions

f fL D and : Concavity of the utility function implies that f D  is concave.  Since f L

replaces the utility differences in f D  with the slope of the utility function multiplied by

the difference between the two consumption levels x g  and x xb g= −ω , concavity of u

also implies that f x f xD g L g( ) ( )> .  Finally, r > 0  implies that

ω ω ω ω ω= + + > +g b g br , and this means that f L g( )w > 0 .

Figure 2 shows what f fL D and  look like in the case where f D ( / )ω 2 0< .  From

this figure we can immediately see that steady states of both types exist: since each

function f  is continuous and positive at ω g , either it is positive at ω / 2 , in which case

ω / 2  is a steady state, or it must be zero somewhere on the interval [ / , ]ω ω2 g , and that

zero is a steady state.  Moreover, since f D  is concave, it can be zero at most in this

interval, so that in the debt constrained economy the steady state is unique.  If we
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calculate Df L  and substitute in the interior steady state condition f xL g( ) = 0 , we find

that at interior steady state Df xL g( ) > 0 .  As can be seen in Figure 2, this together with

the boundary condition f L g( )w > 0  implies that in the liquidity constrained economy the

steady state is unique.  We sum up our discussion with a proposition.

f D

f L

ω / 2

xg

ω g

Figure 2

Proposition 4: A symmetric steady state exists both in the liquidity constrained and in the

debt constrained economy. In each case there is only one symmetric steady state.

In the limiting case where δ = 1  in the liquidity constrained economy, we can

calculate f Du rL ( / ) ( / )w w2 2 0= > .  For δ  sufficiently close to 1, f L ( / )w 2 0> , and

so the only liquidity constrained symmetric steady state will be the symmetric first best

x g = ω / 2 .  Since f x f xD g L g( ) ( )>  the same statement is true in the debt constrained

economy case: in both cases we reach full efficiency when consumers are sufficiently

patient.

In a similar vein, we see that

sgn ( / ) sgn ( / ) ( / )f L g bw w w d w w2 2 2= - + - .

Increasing r, holding ω g  and ω b  fixed, has the effect of increasing ω ω ω= + +g b r .

When r is sufficiently large, ω ω/ 2 ≥ g  and f L ( / )w 2 0�  again imply that both liquidity

constrained and debt constrained symmetric steady states are first best.  In other words, if
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the gross return to the stock of physical capital is sufficiently large relative to the

productivity of human capital, then markets are fully efficient.

The intuition for these results is simple: In the liquidity constrained economy

increasing δ  increases the steady state price of physical capital v, thus increasing v r+ .

Increasing r does this directly.  The larger is v r+ , the easier it is for consumers to

smooth consumption using trades in physical capital.  In the debt constrained economy

increasing δ  increases the penalty for bankruptcy that a consumer suffers from being

excluded from intertemporal trade.  Increasing r increases the penalty that he suffers from

losing his collateral, his endowment of physical capital.  The larger are these penalties,

the easier it is to satisfy the individual rationality constraints.

The interest rate at the symmetric steady state can be calculated from a ratio of

marginal utilities

i
Du x

Du x

g

b
= −( )

( )δ
1.

In the symmetric first best this gives the usual complete market interest rate equal to the

subjective discount rate 1 1/ δ − .  When the symmetric first best is not reached, x xg b> ,

so the interest rate will be lower than the subjective discount rate.  The intuition is simple:

Borrowers are constrained, lenders are not.  To keep the level of loans from lenders as

low as is required in equilibrium, the market must have a low rate of interest.

The general features of both the liquidity constrained and the debt constrained

economy can be illustrated by a simple numerical example.  Suppose that utility is given

by u x x( ) log= , and that the endowments and discount factors are ω ωg b= =24 9, ,

r = 1,  δ = 1 2/ .  Here the consumers are quite impatient, and their productivity fluctuates

substantially.  In addition, human capital is much more important than physical capital.

In the liquidity constrained economy we compute

f x x x x xL g g g g g( ) ( ) / ( ) / ( )= - + - - =24
1

2
25 34 0 ,

from which it follows that x xg b= =20 63 1337. , . .  By way of contrast, in the debt

constrained economy,

f x x xD g g g( ) log log log( ) log= − + − − =24
1

2
34 9 02 7 ,
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resulting in x xg b= =18 16, .  As can be seen, the liquidity constrained economy has

less consumption smoothing, and indeed, the debt constrained economy exhibits a large

degree of consumption smoothing.  As we shall see below, if the shock is more persistent,

the degree of consumption smoothing is significantly reduced.

It is also of interest to compute the interest rate.  The subjective discount rate

corresponding to a discount factor of 1/2 is 100 percent.  In the liquidity constrained

economy however, the interest rate is 29.6 percent, considerably lower.  In the debt

constrained economy it is 77.8 percent.

This example is also useful because it illustrates how the symmetric steady states

of the two models can be implemented as equilibria.  The problem that we must get

around is that discounting puts the two consumers in asymmetric positions: the type of

consumer who first has good productivity has a permanent advantage over the other type.

The easiest way to compensate for this advantage and arrive at the steady state is to

impose a transfer payment from one consumer type to the other.  In the liquidity

constrained model, we need the budget constraint for the consumer type who first has

high productivity, say type 1, to hold in the first period,

x v v rg g+ ≤ + + −ω θ τ0
1 ( ) .

This constraint holds with equality when v xg g= −ω  if τ θ= +0
1 ( )v r .

In the debt constrained model, we need to transfer enough income so that the

present discounted value of lifetime incomes are equal

p w r p w rt t t ttt
( ) ( )1

0
1 2

0
2

00
+ − = + +=

∞
=

∞ ∑∑ θ τ θ τ .

Alternatively, in the debt constrained model, we could introduce uncertainty before the

first period, giving both consumer types equal chances of having the high productivity

first, and allowing them to write contingent contracts against this initial uncertainty.

5. Short Sales

So far we have assumed that capital must be held in nonnegative amounts.  This is

an immediate consequence of the locational story given above.  In the deterministic case,

that there is only one asset, physical capital, means that only the inability to borrow

prevents asset markets from being complete.  In the next section, we consider a stochastic

economy.  In the stochastic case, that there is only one asset forces asset markets to be
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incomplete.  In the stochastic setting, the locational story plays a more significant role,

because it gives an economically sensible story of why asset markets are incomplete.

It is easy to work out what happens in the deterministic case when borrowing of

physical capital is allowed, even though such sales are not compatible with our locational

story.  We assume that the constraint on short sales of capital takes the form θ t
i d≥ − .

The only change in the previous analysis is that the consumer with bad productivity can

now spend up to 1+ d  units of physical capital to purchase ω g gx−  units of

consumption.  If we redefine

f x Du x x rd Du x x rdL g g g g g g b( ) ( )( ) ( )( )= - + + - - - +w d w w w ,

then the characterization of equilibrium in Proposition 3 continues to hold.

It is obvious that, if d is sufficiently large, f L ( / )w 2 0>  and the symmetric first

best is the unique symmetric steady state.   Since a single asset is all that is needed for

market completeness in the deterministic case, this should come as no surprise.  There is

also a unique level of debt $d  so that f xL g( $ ) = 0 , where $x g  is the unique solution of

f xD g( $ ) = 0 .  In the numerical example in the previous section, setting $ .d = 132  results in

a solution where $x g = 18  in the modified liquidity constrained model, just as in the debt

constrained model.

If our welfare criterion places equal weights on the two types utility and if the debt

limit d d> $  (and $ /x g < ω 2 ), then the liquidity constrained equilibrium provides a higher

welfare level than the debt constrained equilibrium.  (If the discount factor is close

enough to one, higher welfare in this sense will also imply Pareto dominance.)  The

implication is that to enforce the repayment of debt in the incomplete markets model

when d d> $ , it will be necessary to seize human as well as physical capital.

6. A Stochastic Environment

With deterministic alternation between productivities, the liquidity constrained

economy and debt constrained economy are quite similar: the major difference is that the

debt constraints allow greater trade.  We now show that when we allow for random

productivities, equilibrium with debt constraints continues to be described by a stochastic

version of a steady state, but the liquidity constrained economy does not permit this type

of simple equilibrium.
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We modify the physical environment so that the consumer with good productivity

is chosen randomly.  Let η t ∈{ ,2}1  denote the consumer who has good productivity at

time t.  This random variable is assumed to follow a Markov process, which is

characterized by a single number 0 1< <π , the probability of a reversal, that is, a

transition from the state where type 1 has good productivity to the state where type 2 has

good productivity, or vice versa.  When π = 1 we are in the deterministic case.

The economy now takes place on a tree rather than over time.  The root of the tree

is denoted by η0 .  A state history is a finite list s t= ( , , )η η1 K  of events that have taken

place through time t s( ) , where t s( )  is the length of the vector s, the time at which s

occurs.  The history immediately prior to s is denoted s −1 , and if the node σ  follows s

on the tree, we write σ > s .  The countable set of all state histories is denoted S.  The

probability of a state history is computed from the Markov transition probabilities

π η η η η η ηs t s t s t s t spr pr pr= − − −( | ) ( | ) ( | )( ) ( ) ( ) ( )1 1 2 1 0L .

η0

η2 1=

η1 2=

η2 2=

η2 1=

η2 2=
η1 1=

Figure 3

Consumption and endowments are now subscripted by state history, rather than by

time.  Utility for consumer i is the expected utility ( ) ( )( )1− ∈∑δ δ πt s
s s

i
s S

u x .  Define θ s
i  to

be the holding of capital at the end of state s. The optimization problem in the liquidity

constrained case now becomes
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max ( ) ( )( )1− ∈∑δ δ πt s
s s

i
s S

u x

subject to

x v w v rs
i

s s
i

s
i

s s
i

s
i i

+ ≤ + +

≥

θ θ

θ θ
η( , ) ( )

,0 0 fixed.

In the debt constrained economy the optimization problem of the consumer is

max ( ) ( )( )1-
¶

Íd d pt s
s s

i
s S

u x

subject to

p x p w r

u x u w

s s
i

ss S s
i i

s S

t t s
s

i

s

t t s
s

i

s

� +

- � -
¶¶

-

�

-

�

ÍÍ
Í Í

( )

( ) ( / ) ( ) ( ) ( / ) ( ).( ) ( ) ( ) ( )

q

d d p p d d p ps

s ss

s

s ss

0

1 1

As in the deterministic case, a proposition appendix shows that this Arrow-Debreu

formulation of the budget constraint has an equivalent sequential markets formulation.

x q q w v rs
i

s s
i

s s
i

s
i

s s
i

s
i i

+ + ≤ + +

≥ −
( , ) ( , ) ( , ) ( , ) ( )

,

1 1 2 2

0

θ θ θ

θ θΘ  fixed,

where q s( , )η  is the price of the Arrow security traded in state s that promises a unit of

physical capital to be delivered at state ( , )s η . A standard arbitrage argument implies that

q q vs s s( , ) ( , )1 2+ = . The sequential markets budget constraint for debt constrained markets

differs from the liquidity constrained budget constraint in two ways. First, as in the

deterministic case, we have Θ > 0  rather than Θ = 0. Second, and significantly, in the

liquidity constrained case consumers are restricted to trades in which θ θ( , ) ( , )s
i

s
i

1 2= .

In the stochastic case, we define a symmetric stochastic steady state by

consumption x g  when productivity is good and xb  when productivity is bad, and the rule

x
x w

x ws
i

g
s
i g

b
s
i b

=
=
=

%&'
ω
ω .

In the debt constrained economy, stochastic steady states are much like deterministic

steady states: we decrease x g  from ω g  until we either achieve the symmetric first best at

x g = ω / 2  or until the individual rationality constraint begins to bind.  As in the

deterministic case, we define a function proportional to the difference between the utility

from the steady state consumption plan and consumption in autarky.  A recursive

calculation shows that this function is
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f x u x u u x uD g g g g b( ) ( ) ( ) ( ) ( ) ( )= − − − + − −1 1δ π ω δπ ω ω1 62 7 2 7 .

By exactly the same argument as that leading to Proposition 3, we obtain the following

result.

Proposition 5: A symmetric stochastic steady state x g  of the debt constrained economy

is characterized by

f D( / )ω 2 0≥  and x g = ω / 2  or

ω ωg > / 2 , f xD g( ) = 0  and x g g∈[ / , ]ω ω2 .

When π = 1 the function f D  is concave and satisfies f D g( )ω > 0 , and we have

concluded that a symmetric steady state exists and is unique.  Since when 0 1< <π  it is

still true that f D  is concave and satisfies f D g( )ω > 0 , we reach exactly the same

conclusions.

Proposition 6: A symmetric stochastic steady state exists in the debt constrained

economy.  There is only one symmetric stochastic steady state.

An interesting question is how the steady state level of consumption depends on

the parameter 1− π  measuring the persistence of the shock.  From the implicit function

theorem, in the case where the debt constraint binds, we can compute

dx

d

f

f x

g D

D g( )

/

/1−
=

π
∂ ∂π
∂ ∂

.

We already observed that at an interior steady state f D  must intersect the axis from

below, so ∂ ∂f xD g/  is positive.  We can also rewrite f D  as

f x u x u u x u u x uD g g g g b g g( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − − + − − + −1 δ ω δπ ω ω ω2 7 2 7 .

When f xD g( ) = 0 , since the first term is negative, the second term is positive, and since

∂ ∂πf D /  is proportional to the second term, it is also positive.  We conclude that

dx

d

g

( )1
0

−
>

π
,

meaning that a more persistent shock results in greater consumption by the good

productivity consumer, or equivalently less trade between the two consumers.
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This result is reinforced by reexamination of the numerical example.   Recall that

u x x( ) log= , while the endowments and discount factors are ω ωg b= =24 9, ,  r = 1,

δ = 1 2/ .  Recall that in the deterministic case, π = 1, we had x xg b= =18 16, .  By way

of contrast, if π = 1 2/ , we can compute

f x x xD g g g( ) (log log ) log( ) log= − + − − =3

4
24

1

4
34 9 02 7 ,

from which it follows that x xg b= =2152 12 48. , . , a considerable reduction in the

amount of consumption smoothing.

In the debt constrained economy, when the economy becomes stochastic,

consumption smoothing is reduced, and consumption of x g  and xb  fluctuates randomly.

Conceptually, however, the equilibria are very similar in the deterministic and stochastic

cases.

The case of liquidity constraints is strikingly different.  As in the deterministic

case, the good productivity consumer trades goods to the bad productivity consumer in

exchange for physical capital.  Since the good productivity consumer holds physical

capital at the end of the period, his first order condition

v Du x

v r Du x v r Du x
s

g

s
g

s
g

( )

( )( ) ( ) ( ) ( )+ ++ − + ′ + −
=

1 11 π π ω
δ

continues to determine prices, where vs+1  is the price of capital when the state at t +1 is

the same as that in the previous period, and ′+vs 1  is the price when a reversal of the state

takes place.  In addition, we show in the appendix (see also Levine and Zame [1996], for

example) that the capital prices vs  must be uniformly bounded, say by v , or else no one

would be willing to hold capital.

This boundedness of physical capital prices poses a dilemma, however.  The

consumer with bad productivity must purchase xb b− ω  units of consumption each

period, and so must expend at least ( / )( )1 v xb b-w  units of physical capital each period.

Since there is only one unit of capital in the economy, a consumer can have bad

productivity no more than v xb b/ ( )-w  periods before he will have expended all of his

physical capital.  If 0 1< <π , however, then there is a positive probability that a

consumer will have a run of bad luck with his productivity that exceeds this length of

time.  We conclude that xb b− =ω 0 , that is, the only possible stochastic steady state is
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autarky.  In autarky, however, the consumer with bad productivity is free to borrow, so

prices must be determined also by his first order condition

Du

Du Du

v r

v

Du

Du Du

b

b g

g

g b

( )

( ) ( ) ( )

( )

( ) ( ) ( )

ω
π ω π ω

δ ω
π ω π ω1 1− +

= + =
− +

.

This is possible only if ω ωg b= , violating the assumption that ω ωg b> .  We can

summarize this discussion with a proposition.

Proposition 7: If 0 1< <π  there is no symmetric stochastic steady state with liquidity

constraints.

There is a simple intuition for this result: Suppose that a consumer has bad productivity

for the first time.  Then he should sell some of his physical capital to smooth his

consumption.  If the consumer is unlucky enough to have bad productivity in the

subsequent period, he has less physical capital and so is in a different situation than when

he had bad productivity for the first time.  Consequently, with liquidity constraints,

consumption must depend not only on the current state, but also on the distribution of

physical capital between the two types.  Notice that this proposition is not sensitive to

permitting borrowing of physical capital: any fixed debt constraint will eventually be

exceeded by a very long run of bad luck.

7. Dynamic Analysis

The debt constrained economy is sufficiently simple that we can give a complete

analysis even without the steady state assumption. Given an arbitrary initial condition

θ 0
1 ,  θ 0

2  there is a unique equilibrium. This equilibrium can have two distinct phases: an

initial phase and a final phase. In the deterministic case the initial phase is just the first

period; more generally, the initial phase lasts until the two consumer types exchange

roles. The equilibrium is one of two types. If the parameters are such that the symmetric

first best satisfies the debt constraints, then in the final phase, each consumer’s

consumption over time is constant. If the symmetric first best does not satisfy the debt

constraint, then the final phase is the symmetric steady state. The striking fact in this case

is that, even if the initial condition and initial phase are quite asymmetric, once roles have

reversed, from that point on consumption depends only a consumer’s endowment, and not

on his type.
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This characterization of dynamic equilibrium formally presented in the appendix.

Recall that the first welfare theorem holds for these economies. There are two separate

cases, the non-binding case in which the debt constraint does not bind at the symmetric

first best and the binding case in which it does. In the non-binding case, efficiency

requires that consumption remain constant until the first point in time at which the debt

constraint does begin to bind. If the debt constraint never binds, then the equilibrium is a

steady state, although not necessarily a symmetric one. If the debt constraint does bind at

some point, then from that point on, the stationarity of the model forces the economy to a

steady state with constant consumption in which the debt constraints binds on just one

consumer type.

The binding case, where the debt constraint is binding at the symmetric first best,

is more interesting. Here, it is easy to show that in equilibrium the debt constraint

eventually binds on both types of consumers. When it binds for the first time, the

equilibrium jumps immediately to the symmetric steady state. The intuition is clear:

Efficiency requires that the equilibrium allocation solve the problem of maximizing the

expected discounted utility of the unconstrained type from that date onward, subject to

the individual rationality constraints for the other consumer type. If the unconstrained

type is always the type with the smaller endowment, then this problem is symmetric

between the two consumers and the equilibrium after the debt constraint binds for the first

time must be both symmetric and stationary.

The dynamic path of consumption and capital can be illustrated by our numerical

example. For simplicity we discuss the deterministic case. We first consider an example

in the non-binding case. In any such example, we should first check to see if the constant

allocation that satisfies the budget constraints also satisfies the individual rationality

constraints: if it does then this is the unique equilibrium. To do this check, we observe

that in any steady state with non-binding individual rationality constraints the price of

capital is v r= -d d/ ( )1 . Letting the first consumer type have the high endowment first,

the sequential markets budget constraints are

x v v r x v v rg b1
1
1

0
1 1

2
1

1
1+ = + + + = + +θ ω θ θ ω θ( ) , ( ) .

We can easily solve these two equations for q 1
1  and x1  to find

x rg b g1
0
11= + - - +w d w w d q( ) / ( )
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and similarly we can find

x rb g b2
0
21= + - - +w d w w d q( ) / ( ) .

We then simply check that u x u x u ui i g b( ) ( ) ( ) ( )+ � +d w d w , for i = 1 2, . To make things

interesting, let us suppose that u x x( ) log= , ω g = 24,  ω b = 9,  r = 1,  and d = 3 4/ . If

θ 0
2 0 33< . , then x2 1576< . , which can easily be checked to violate the individual

rationality constraint. Take then the case in which q 0
2 0= . Beginning at t = 1 , when the

individual rationality constraint starts to bind, we nevertheless have xt
1 18 24= . ,

xt
2 1576= . . What about t = 0 ? The first order condition for type 1, who is unconstrained

in borrowing is

Du x

Du x

v r

v

( )

( )
0
1

1
0d

= +

and he faces budget constraint

x v v rb
0
1

0 1
1

0
1+ = + +q w q( ) .

These must be solved for x0
1  and v0 . Since after t = 0  we will be at the steady state, both

consumers must hold the same capital shares going into period 1 that they will hold going

into any odd period. Using this fact, we calculate x0
1 19 27= . , x0

2 14 73= . , v0 317= . .

Next we examine the binding case. Suppose we lower the discount factor from

d = 3 4/  to d = 1 2/ . Then we can easily check that at the symmetric first best, the

individual rationality constraints bind. Computing the symmetric steady state, we find

that v = 129. , θ g = −132. , θ b = 2 32. , x g = 18, xb = 16 . In period t = 0  we use the

budget constraint and the first order condition,

Du x

Du x

v r

vb

( )

( )
0
1

0d
= +

to solve for x0
1, v0 ; in the example we have

v

x

0
0
1

0
1

0
1 0

1

0
1

24

16 32

336 14

16 32

= +
-

= +
-

q
q
q
q

.

.
.
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8. Conclusion

With liquidity constraints the structure of equilibrium in the stochastic case is

complicated: it cannot be a stochastic steady state.  In a sense the picture is worse than

this.  Equilibria have been computed in a few special cases, as in Scheinkman and Weiss

[1986] and Kehoe, Levine, and Woodford [1992].  There is a general theorem about

existence of Markov equilibrium due to Duffie, Geanakoplos, Mas-Colell, and McLennan

[1994], and a method of computing approximate equilibria due to Levine [1993].  The

equilibria are Markov on a very large state space, however, and as far as we know no

model that combines both idiosyncratic and aggregate risk has been successfully used for

calibration or estimation. The debt constrained economy is much simpler.  Stochastic

steady states do exist, and are easy to compute.  This is because in a stochastic steady

state short run shocks have no long run effects.
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Appendix

We treat the general case of random productivity.  The results also apply to the

special case of the deterministic model of the first half of the paper when we set the

reversal probability π = 1.

Lemma: Equilibrium capital prices vs  are bounded.

Proof: Let 
r

lx i ∈ ∞
++  denote the equilibrium consumption plan of type i, and let 

r
θ i  be the

corresponding plan for holding capital.  The strategy of proof is to construct, for any state

history s, an alternative consumption plan 
r
x  for one of types that satisfies the budget and

liquidity constraints.  The fact that the utility from the equilibrium plan is at least as good

as that from the alternative plan gives rise to an inequality.  We can then manipulate this

inequality, using the fact that equilibrium consumption must be socially feasible, to

derive an upper bound on the capital price vs .  (Capital prices are bounded below because

they are nonnegative.)

Fix s S∈ .  One type, say i, must hold at least half the physical capital stock in

equilibrium at s.  Consider the alternative plan for type i, 
r
x , that consumes x vs s= / 2  at

s, x wi
σ σ=  for state histories σ > s  that follow s, and x xi

σ σ=  (the same as the

equilibrium plan) for all other state histories.  Since type i holds at least half of the

physical capital at s this plan satisfies the budget and liquidity constraints if we choose

capital holding θσ = 0  for σ ≥ s  and θ θσ σ= i  otherwise.  For 0 1≤ ≤λ , define the

consumption plan 
r
x λ

x x xi
σ
λ

σ σλ λ= − +( )1 .

Since 
r
x λ  is a convex combination of 

r
x i  and 

r
x , it also satisfies the budget and liquidity

constraints if we choose capital holdings θ λ θ λθσ
λ

σ σ= − +( )1 i .

Since at equilibrium prices 
r
x λ  is feasible for i and 

r
x i  is optimal, we must have

( ) ( ) ( ) ( )( ) ( )1 1− ≥ − ∈∈ ∑∑δ δ π δ δ πσ
σ σ

σ
σ σ

λ
σσ

t i t
SS

u x u x .

Since 
r
x i  and 

r
x  differ only along the branch of the tree of state histories that begins at s

this inequality holds also where the sum on both sides is only over states the equal or

follow s.  Dividing the resulting inequality by d pt s
s

( ) , we can write

( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 1− − ≥ − − −>∑δ δ π δ δ πσ
σ σ σ

λ
σ σ

λ
σ

t i t s
s

i

s
u x u x u x u x .
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The concavity of u implies that Du x x x u x u xs
i i( ) ( ) ( )
s s

l

s s

l- � - .  This inequality

is immediate if x xi
σ σ

λ≤ , since then u x u xi( ) ( )σ σ
λ−  is nonpositive.  If x xi

σ σ
λ≥ , then

x xi
σ σ≥  so for all ′xσ , x x xi

σ σ σ
λ≥ ′ ≥ , Du x Du x( ) ( )σ σ≥ ′  and the inequality follows from

Taylor’s theorem.  Since in addition, x xi
σ σ

λ λω− ≤ , and for σ > s  x b
σ ω≥ , we conclude

that

Du u x u xb i( ) ( ) ( )ω λω σ σ
λ≥ − .

Substituting back into the previous utility inequality, this gives

δ π ω λω δ δ π σ σ
λt s

s
b t s

s
iDu u x u x( ) ( )( ) ( ) ( ) ( )≥ − − −−1 1 .

Dividing both sides by δ π λt s
s

( )−1  and taking the limit as λ → 0  we find

δ ω ω δ σDu Du x x xb i
s s

i( ) ( ) ( )≥ − −1 .

Since xs
i ≤ ω  and x vs s= / 2 , we conclude that if vs / 2 ≥ ω

δ ω ω δ ω ωDu Du vb
s( ) ( ) ( ) /≥ − −1 2 .

Consequently

v
Du

Dus

b

≤
−

+
�
! 

"
$#

%&'
()*

max ,2
( )

( ) ( )
2

1
ω δ ω ω

δ ω
ω

q

Proposition A: If ps , xs
1, xs

2 is an equilibrium of the debt constrained economy with

Arrow-Debreu budget constraints, then there exist prices qs and vs and asset holdings

θ s
1 and θ s

2  such that qs , vs , xs
1, xs

2 , θ s
1 , θ s

2  is an equilibrium of the economy with

sequential markets constraints.  Conversely, if qs , vs , xs
1, xs

2 , θ s
1 , θ s

2  is an equilibrium

of the economy with sequential markets constraints, then there exist prices ps such that

ps , xs
1, xs

2 is an equilibrium of the economy with Arrow-Debreu budget constraints

Proof: Consider first an equilibrium of the economy with Arrow-Debreu budget

constraints. The budget constraint is

p x p w rs s
i

ss S s
i i

s S
≤ +∈∈ ∑∑ ( )θ 0

If wealth p w rss S s
i i

∈∑ +( )θ 0 is unbounded or if ps = 0 for some s , the consumer’s

problem has no solution, so in equilibrium neither of these can be the case. From finite
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wealth and the fact that w rs
i i+θ 0  is uniformly bounded away from zero, we conclude that

the infinite price vector 
r
p  is an element of l1;  that is, the sequence 

r
p  is summable.

Since ps > 0 and 
r

lp ∈ 1 , we can define

q
r p

ps
s

s
( , )

( , )
η

σσ η= ≥∑

θ η
σ σ σσ η

η
( , )

( , )

( , )

( )
s

i

i i
s

s s

p x w

p q
=

−≥∑
.

If we now plug these definitions into x q qs
i

s s
i

s s
i+ +( , ) ( , ) ( , ) ( , )1 1 2 2θ θ , we find that

x q q w v rs
i

s s
i

s s
i

s
i

s s
i+ + = + +( , ) ( , ) ( , ) ( , ) ( )1 1 2 2θ θ θ .

Since in equilibrium x wi i
σ σ ω− ≥ − , we also find from the definitions that

θ ωη( , ) /s
i r≥ − .

Consequently, if Θ ≥ ω / r , any budget feasible plan with respect to the Arrow-Debreu

budget constraint is budget feasible with respect to the sequential markets budget

constraint.  Moreover, the consumption alternative defined in the lemma is budget

feasible with respect to the present value budget constraint, so it follows also that the ν s

are uniformly bounded.

Now consider an equilibrium of the economy with sequential markets budget

constraints.  We want show that, if the prices ν s  are uniformly bounded, a consumption

plan that is feasible with respect to the sequential markets budget constraints is feasible

with respect to the corresponding Arrow-Debreu budget constraint.

Let s t= ( , , )η η1 K , and let σ η σ η η σ1 1 2 1 2= = =( ), ( , ), ,K t s . We define Arrow-

Debreu prices by

p
q

rs

t=
+

−

=∏ σ

σ
τ

τ

τ
ν

1

1
.

Since q q vs s s( , ) ( , )1 2+ = , and ν s  is uniformly bounded, it follows that 
r

lp ∈ 1 .

We now recursively work the budget constraint forward, solving the budget

constraint for asset holding

θ
θ θ

η
η η η η η η η

η
( , )

( , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , )
s

i s
i

s s
i

s s
i

s
i

s

x q q w

v r
=

+ + −
+

1 1 2 2



25

and substituting back into the previous period budget constraint

x q q w v rs
i

s s
i

s s
i

s
i

s s
i+ + = + +( , ) ( , ) ( , ) ( , ) ( )1 1 2 2θ θ θ .

Using the definition of present value prices, this yields a sequence of budget constraints

of the form

p x w r ps s
i

s
i i

s S t s T s s
i

s S t s T
( )

, ( ) , ( )
− − + ≤∈ < ∈ =∑ ∑θ θ0 0 .

Since 
r

lp ∈ 1  and in equilibrium 1+ ≥ ≥ −Θ Θθ s
i , the final sum vanishes as T → ∞ , and

the Arrow-Debreu budget constraint is satisfied.

q

Proposition B: There is a unique equilibrium of the debt constrained model. During the

initial phase, equilibrium consumption is constant. In the binding case, following the

initial phase, consumption follows the symmetric steady state. In the non-binding case,

following the initial phase equilibrium consumption is constant, although possibly

different than during the initial phase.

Proof: We first consider the binding case. Since the first welfare theorem holds, it

suffices to show that all efficient allocations have the required property. Uniqueness of

equilibrium follows directly since the values of individual consumers’ allocations at the

supporting prices are monotone in the welfare weights.

To study efficient allocation, we formulate the Pareto problem recursively as the

problem of maximizing the utility of a consumer initially in the good state subject to

social feasibility, individual rationality and a utility constraint for the other consumer.

Denote by $ , $U Ug b  the average present value utilities received in the good and bad state

respectively at the symmetric steady state. We denote by U Ug b,  the average present

value utilities from the endowment in the good and bad state respectively. Note that
$U Ug g= . It is convenient also to define the function u u( ) as the utility a consumer

receives when the other consumer receives utility u  within a period. Notice that this

function is smooth, strictly concave, and that it is its own inverse.

Notice first that the average present value utility a consumer initially in the bad

state receives must be at least U b , and, since the constraint binds on the other consumer

at the symmetric steady state, no more than $U b . Let V Ug b( )  for U U Ub b b∈[ , $ ]  be the

solution to the problem of maximizing the utility of a consumer initially in the good state
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subject to social feasibility, individual rationality and a utility constraint for the other

consumer. The inverse of this function is denoted by V Ub g( ) . Exploiting the symmetry

between the two consumers, let ub be the initial utility of the consumer in the bad state,

let 
~

U b  be his second period average present value if he remains in the bad state, and let
~~

U b  be his second period average present value if he switches to the good state. The

Bellman equation is

V U u u V U V Ug b

u U U

b g b b b
b b b( ) max ( ) ( ) ( ) (

~
) (

~~
)

,
~

,
~~= - + - +1 1d d p dp

subject to

( ) ( )
~ ~~

~

~~

(
~

)

(
~~

) .

1 1− + − + ≥

≥

≥

≥

≥

δ δ π δπu U U U

U U

U U

V U U

V U U

b b b b

b b

b g

g b g

b b b

The objective function is strictly concave, so this problem has a unique solution.

Consequently, it suffices to verify that our proposed plan of time constant consumption in

the initial phase, and the symmetric steady state thereafter solves this problem.

Under this proposal 
~ $ ,

~~ $U U U Ub b b g= = , and the utility constraint should bind, so

that first constraint holds with equality and is used to determine ub

u U U Ub b b g= +
−

−δπ
δ1

$3 8 .

Plugging these guesses into the Bellman equation, and observing that V U Ub g b( $ ) $= , we

can solve to find our proposed value function

V U
u U U U U

g b

b b g b

( )
( ) $ $

( )
=

− +
−

−�
��

�
�� +

− −

1
1

1 1

δ δπ
δ

δπ

δ π

3 8
,

and we may also solve for the inverse function

V U
u U U U U

b g

g g b g

( )
( ) $ $

( )
=

− +
−

−�
��

�
�� +

− −

1
1

1 1

δ δπ
δ

δπ

δ π

3 8
.
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We need only show that the first order conditions and constraints are satisfied by our

proposed solution.

We begin by verifying the constraints hold at the proposed solution. The first

constraint holds with equality by construction. The second constraint holds because the

U b  must be in the range [ , $ ]U Ub b . The third constraint holds because the symmetric

steady state satisfies the individual rationality restrictions; indeed it holds with equality.

Turning to the fourth constraint, since u  is strictly decreasing, since U Ub b≤ $ , it

suffices to show that

u U U U U U Ub b g g g b$ $ $ $+
−

−�
��

�
�� ≥ +

−
−δπ

δ
δπ

δ1 1
3 8 3 8.

To show this, observe that at the symmetric steady state

( ) $ ( ) $ $ $1 1− + − + =−δ δ π δπη η η ηu U U U ,

so that

$ $ ( $ $ )u U U Uη η η ηδπ
δ

= +
−

− −

1
.

Since $U Ug g=  the inequality in question reads u u ub g( $ ) $≥ . Since the symmetric steady

state is socially feasible, in fact u u ub g( $ ) $= . So the fourth inequality is verified.

Similarly for the fifth inequality, we may write it as

u U U U U U Ug g b b b g$ $ $ $+
−

−�
��

�
�� ≥ +

−
−δπ

δ
δπ

δ1 1
3 8 3 8.

Making use of the equations for $uη  above and u u ug b( $ ) $= , this becomes

$ ( $ $ ) $U U U U U Ub b g b b g+
−

− ≥ +
−

−δπ
δ

δπ
δ1 1

3 8 ,

which follows directly from the fact that at the symmetric steady state $U Ub b≥ .

To verify the first order conditions, we guess that all the Lagrange multipliers are

zero except for those corresponding to the first and third constraints. So we write the

Lagrangean

( ) ( ) ( ) (
~

) (
~~

)

( ) ( )
~ ~~ ~~

.

1 1

1 1

− + − +

+ − + − + +

δ δ π δπ

λ δ δ π δπ µ

u u V U V U

u U U U

b g b b b

b b b b4 9
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The corresponding first order conditions are

λ = −Du ub( ), λ = −DV Ug b(
~

) , µ δπ λ= − +�� ��DV Ub b(
~~

) .

It suffices to show, therefore, that Du u DV Ub g b( ) ( )= , and Du u DV Ub b g( ) ( $ )≥ . From the

definition of V Vg b,  above, we have

DV U Du U U Ug b b b g( ) $= +
−

−�
��

�
��

δπ
δ1

3 8

DV U Du U U Ub g g g b( ) $= +
−

−�
��

�
��

δπ
δ1

3 8 .

By construction,

u U U Ub b b g= +
−

−δπ
δ1

$3 8 .

This gives Du u DV Ub g b( ) ( )=  immediately. Substituting into the final inequality, we

must show

Du U U U Du U U Ub b g g g b( $ ) $ $ $+
−

− ≥ +
−

−�
��

�
��

δπ
δ

δπ
δ1 1

3 8 3 8 .

Since U U Ub b g≤ ≤$ $ , this follows from the fact that Du  is strictly decreasing.

Turning to the non-binding case, observe that when the utility constraints do not

bind, the unique efficient allocation is for each consumer to have a constant consumption

stream in all periods. If we increase the utility of the consumer initially in the bad state,

eventually the constraint binds on the consumer in the good state. Since this is an efficient

allocation, the consumer initially in the bad state can receives no higher utility in any

feasible allocation satisfying the utility constraints.

In the opposite case, where we reduce the utility of the consumer initially in the

bad state, eventually the constraint binds on that consumer in the first period following

the initial phase. To reduce his utility further, we simply reduce his consumption in the

initial phase only, leaving the constraint after the initial phase just binding. It is easy to

show that efficiency demands a constant consumption stream during the initial phase, and

this allocation can easily be verified to be efficient using exactly the same type of

dynamic programming argument used above.

q
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