Continuous Time Models of Repeated Games with Imperfect Public Monitoring

Drew Fudenberg and David K. Levine

2006 Summer SED Meeting

What Happens In Repeated Games With Short Periods?

- A common model: continuous time limit
- Two effects in general: player more patient, information less good
- Impact of distribution of signals in a fixed discrete-time game
- Change in distribution with the period length
- Focus on case of long-run versus short-run
- Primarily expositional: see Abreu, Pearce and Milgrom [1991],
 Sannikov [2006], Sannikov and Skrypcaz [2006], Faingold and Sannikov [2005], Faingold [2005]
- What is the underlying economics of all these results?

Basics – Long Run versus Long Run

Fudenberg, Levine and Maskin [1995] folk theorem

Under mild informational conditions any individually rational payoff vector approximated by equilibrium payoff if common discount factor of the players is sufficiently close to one

Sannikov [2005] characterizes equilibrium payoffs in continuous time where information follows vector valued diffusion, proves a folk theorem when information has a product structure and limit of interest rates $r \to 0$.

Basics – Long Run versus Short Run

Fudenberg and Levine [1994] LP algorithm to compute limit of equilibrium payoffs as discount factor of the long-run players converges to one and characterizes limit payoffs when information has a product structure; typically bounded away highest payoff when all players are long-run, but better than static Nash

Faingold and Sannikov [2005] show set of equilibria in continuous time where information is a diffusion process is only the static equilibrium

Abreu, Pearce and Milgrom [1991] implicitly show that with continous time Poisson information "bad news" signals lead to folk theorem, "good news" signal lead to static Nash

Summary

- Long run versus long run length of period makes little difference
- Long run versus short run length of period makes a big difference
 - "good news" Poisson or diffusion leads to static Nash
 - "bad news" Poisson leads to folk theorem

Long-Run versus Short-Run

two-person two-action stage game payoff matrix

	Player 2		
		L	R
Player 1	+1	<u>u</u> ,0	<i>u</i> ,1
	-1	<u>u</u> ,0	u+g,-1

$$\underline{u} < u, g > 0$$

2 plays **L** in every Nash equilibrium player 1's static Nash payoff \underline{u} , also minmax payoff player 1 prefers that player 2 play **R** can only induce player to play **R** by avoiding playing **–1** classic time consistency problem

Information

end of stage game public signal $z \in \mathbb{R}$ observed depends only on action taken by player 1 (player 2's action publicly observed) public signal drawn from $F(z \mid a_1)$

F is either differentiable and strictly increasing or corresponds to discrete random variable

 $f(z \mid a_1)$ denotes density function

monotone likelihood ratio condition

 $f(z \mid a_1 = -1) / f(z \mid a_1 = +1)$ strictly increasing in z

means that z is "bad news" about player 1's behavior in sense that it means player 1 probably playing -1

Other Stuff

Availability of public randomization device au length of period player 1 long-run player with discount factor $\delta=1-r\tau$ player 2 an infinite sequence of short-run opponents

Best Perfect Public Equilibrium for LR

largest value v that satisfies incentive constraints

$$v = (1 - \delta)u + \delta \int w(z) f(z \mid a_1 = +1) dz$$

$$v \ge (1 - \delta)(u + g) + \delta \int w(z) f(z \mid a_1 = -1) dz$$

$$v \ge w(z) \ge u$$

or v = u if no solution exists

second incentive constraint must hold with equality

otherwise increasing the punishment payoff w retains incentive compatibility and increases utility on the equilibrium path

Cut-Point Equilibria

monotone likelihood ratio condition implies these best equilibria have a cut-point property

 \tilde{z} * is cut point

continuous z: a fixed cut-point

discrete z: a cut-point randomized between two adjacent grid-points

Proposition 1: There is a solution to the LP problem characterizing the most favorable perfect public equilibrium for the long-run player with the continuation payoffs w(z) given by

$$w(z) = \begin{cases} w & z \ge \tilde{z} * \\ v & z < \tilde{z} * \end{cases}$$

and indeed, $w = \underline{u}$

Measures of Information

continuous case define

$$p = \int_{z^*}^{\infty} f(z \mid a_1 = +1) dz, q = \int_{z^*}^{\infty} f(z \mid a_1 = -1) dz$$

interested in case in which τ is small

information $q(\tau), p(\tau)$ functions of τ

 $\rho, \mu \in \Re \cup \{\infty\}$ regular values of $q(\tau), p(\tau)$ if along some sequence $\tau^n \to 0$

$$\rho = \lim_{\tau^n \to 0} (q(\tau^n) - p(\tau^n)) / p(\tau^n)$$
 [signal to noise]

$$\mu = \lim_{\tau^n \to 0} (q(\tau^n) - p(\tau^n)) / \tau^n$$
 [signal arrival rate]

$$v^* = tu \not\ni gp(((q-\underline{u}p)g)) (uq = g)/\rho, |\overline{v}| = lim_{j^n \to 0} \max\{\underline{u}, v^*\}$$

(***)
$$\mu\left(\frac{(u-\underline{u})}{g}-\frac{1}{\rho}\right)$$

if positive and $\overline{v} > \underline{u}$ there is a *non-trivial* limit equilibrium

exists positive τ, r such that for all smaller values exists equilibrium giving long-run player more than \underline{u}

conversely, if either $\overline{v} \le \underline{u}$ or (***) is non-positive then for any fixed r > 0 along the sequence τ^n the best equilibrium for long-run converges to \underline{u} if $\overline{v} = u$ say that limit equilibrium is efficient: if and only if

Proposition 2: Suppose that ρ, μ are regular. Then there is a nontrivial limit equilibrium if and only if $\rho > g/(u-\underline{u})$ and $\mu > 0$ and $\rho > 0$. There is an efficient limit equilibrium if and only if $\mu > 0$ and $\rho = \infty$.

Poisson Case

public signal of long-run generated by continuous time Poisson Poisson arrival rate is

- λ_p if action is **+1**
- λ_a if action is -1

"good news" signal means probably played +1: $\lambda_q < \lambda_p$; z number of signals

"bad news" signal means probably played –1: $\lambda_q > \lambda_p$; z negative of number of signals

bad-news case $\lambda_q > \lambda_p$

cutoff number of signals before punishment v - w

two or more signals isn't interesting since probability of punishment is only of order au^2

suffices to consider the cutoff in which punishment always occurs whenever any signal is received

probability of punishment $p(\tau)=1-e^{-\lambda_p\tau}, q(\tau)=1-e^{-\lambda_q\tau}$, as the long-run player plays **-1** or **+1**

then $\rho = (\lambda_q - \lambda_p)/\lambda_p$, $\mu = \lambda_q - \lambda_p$ (big and positive respectively)

$$v^* = u - g\lambda_p/(\lambda_q - \lambda_p)$$

note independence of payoff \underline{u}

good news" case $\lambda_q < \lambda_p$

punishment triggered by small number of signals, rather than large if there is punishment, must occur when no signals arrive probability of punishment when no signal $\gamma(\tau)$

$$p(\tau) = \gamma(\tau)e^{-\lambda_p \tau}, q(\tau) = \gamma(\tau)e^{-\lambda_q \tau}$$

regardless of $\gamma(\tau)$ implies $\rho = 0$, so only trivial limit

Overview

with short run providing incentives to long-run has non-trivial efficiency cost

"good news" case, providing incentives requires frequent punishment many independent and non-trivial chances of a non-trivial punishment in a small interval of real time, long run player's present value must be low

contrast, can be non-trivial equilibrium even in the limit when signal used for punishment has negligible probability (as in bad-news case)

<u>or</u> several long run players so punishments can take the form of transfers payments

The Diffusion Case

signals generated by diffusion process in continuous time

drift controlled by the long-run action

sample process at intervals of length au implies signals have variance $\sigma^2 au$

we allow the variance signal $\sigma^2 \tau^{2\alpha}$ where $\alpha < 1$, with diffusion corresponding to $\alpha = 1/2$

mean of the process is $-a_1\tau$ (recall that $a_1 = +1$ or -1)

SO:

$$p = \Phi\left(\frac{-z^* - \tau}{\sigma \tau^{\alpha}}\right)$$

$$q = \Phi\left(\frac{-z^* + \tau}{\sigma \tau^{\alpha}}\right)$$

where Φ is standard normal cumulative distribution

Proposition 3: For any $\alpha < 1$ there exists $\underline{\tau} > 0$ such that for $0 < \tau < \underline{\tau}$ there is no non-trivial limit equilibrium

true even when $\alpha > 1/2$, where process converges to deterministic one contrast "bad news" Poisson case: like diffusion case corresponds to $\alpha = 1/2$

exact form of noise matters: is it a series of unlikely negative events, as in the "bad news" Poisson case, or a sum of small increments as in the normal case?

contrast the diffusion case $\alpha = 1/2$ with a sum of small increments where the scale of the increment is proportional to the length of the interval

standard error of the signal of order au

corresponds to case $\alpha = 1$

take the limit of such sequence of processes, limit is deterministic process without noise.

Proposition 4: If $\alpha = 1$ there exists $\underline{\tau}$ such that for all $0 < \tau < \underline{\tau}$ (*) is satisfied, and $\lim_{\tau \to 0} v^* = u$.

for fixed τ taking a very large cutoff $z^* \to \infty$

causes the likelihood ratio $q/p \to \infty$, so $p/(q-p) \to 0$

so $v^* \rightarrow 1$

note $p,q \to 0$, so for fixed \underline{u} and τ and z^* sufficiently large, (*) must be violated

for any choice of z^*, r, τ , there always \underline{u} sufficiently small that (*) holds worst punishment determines the best equilibrium

going far enough into tail of normal, arbitrarily reliable information can be found about whether a deviation occurred

information can be used to create incentives, provided sufficiently harsh punishment available

when $\alpha=1$ signal to noise ratio improves sufficiently quickly that we can exploit the shorter intervals to choose a bigger cutoff value of ζ

Limits of Poisson Processes

consider for examples "sales" or "revenues"

made up of sum many individual transactions

consider small enough time intervals observe at most a single transaction

so Poisson processes seem natural for studying economic signals in many circumstances, individual transactions not visible

suppose that public signal of long-run player's action generated by observing an underlying Poisson process in continuous time

Poisson arrival rate:

 λ_p if the action **+1**

 λ_q if the action **-1**

observe number of Poisson events (or in "good news" case its negative)

fix the Poisson process generating "sales"

conclude as above that small time interval get a non-degenerate limit if and only if events correspond to "bad news"

this model implies that only individual transactions are observed allow the Poisson parameters to vary with time interval

$$\lambda_p(au), \lambda_q(au)$$

expected number of events over interval of length τ is $\lambda_p(\tau)\tau, \lambda_q(\tau)\tau$. consider case where expected number of events per period very large – that is $\lambda_q(\tau)\tau, \lambda_p(\tau)\tau \to \infty$

from Central Limit Theorem Poisson random variable y has $(y-Ey)/(var y)^{1/2}$ approach a standard normal

claim: good news versus bad news doesn't make any difference once we start aggregating

similar to Hellwig-Schmidt