Reprinted from JOURNAL OF EcoNOMIC THEORY Vol. 44, No. 1, February 1988
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Open-Loop and Closed-Loop Equilibria
in Dynamic Games with Many Players*

Drew FUDENBERG' AND DAviD K. LEVINE?

tDepartment of Economics, University of California,
Berkeley, California 94720 and

iDepartment of Economics, University of California,
Los Angeles, California 90024

Received February 7, 1985; revised January 9, 1987

If players are small, one might expect that optimal reactions to one-player
deviations are negligible, so that the open- and closed-loop equilibria are
approximately the same. We investigate the circumstances in which this is true.
Journal of Economic Literature Classification Numbers: 022, 026.  © 1988 Academic
Press, Inc.

1. INTRODUCTION

The terms “open-loop” and “closed-loop” refer to two different infor-
mation structures for multi-stage dynamic games. In the open-loop model,
players cannot observe the play of their opponents; in the closed-loop
model, all past play is common knowledge at the beginning of each stage.
Open-loop and closed-loop equilibria are then the perfect equilibria
corresponding to the two information structures. (Caution: This ter-
minology is widespread but not universal. Some authors use “closed-loop
equilibrium” to refer to all the Nash equilibria of the closed-loop model.)
Open-loop equilibria are more tractable than closed-loop equilibria,
because players need not consider how their opponents would react to
deviations from the equilibrium path. For this reason, economists have
sometimes analyzed open-loop equilibria, even when the closed-loop
concept is more appropriate.

If players are small, one might expect that optimal reactions to one-
player deviations are negligible, so that the two sets of equilibria are
approximately the same. We investigate the circumstances in which this is
true. The intuition here is very similar to that underlying the literature on
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the limit points of monopolistic competition (Novshek and Sonnenschein
[9], Roberts [10], Mas-Colell [7]), and our work can be viewed as
extending that literature to more general games, as we explain below.

We consider three formulations of the proposition that, with many
players, open-loop and closed-loop equilibrium sets are approximately the
same. In Section 3 we consider nonatomic games in which no player’s
payofT is affected by the actions of a single rival. In this idealized or limiting
version of a game with many players, open-loop equilibria are always
closed-loop equilibria, but closed-loop equilibria may fail to be open-loop
equilibria. If, however, there is a unique Nash equilibrium in every sub-
game, then the open- and closed-loop equilibria coincide.

In Sections 4 to 6, we consider the limits of finite games approaching
a nonatomic game. We begin with an example in Section 4. Following
this, our goal is to show that equilibria in the nonatomic game are
approximately the same as those in the approaching finite games. This
breaks into two parts. In Section 5 we demonstrate upper hemi-continuity:
the limit of equilibria is an equilibrium, and every sequence of equilibria
has a limit. Therefore if the nonatomic game has unique open- and closed-
loop equilibria, all open and closed equilibria approaching the limit must
be near each other. Our second goal, lower hemi-continuity, is less fully
realized; Section 6 reports some results for the differentiable case from
Fudenberg and Levine [3]. Section 7 considers a second approach to the
question of lower-hemi-continuity. Here we show that in a game that is
“almost” nonatomic, an open-loop equilibrium is an approximate closed-
loop equilibrium.

Through most of the paper, we use two-period models for convenience.
In Section 8 we explain how our results extend directly to any finite num-
ber of periods. We find that as the strategic possibilities increase with the
length of the game and the set of closed-loop equilibria expands, it becomes
increasingly difficult to guarantee that closed-loop equilibria are near to
open-loop equilibria. We conclude in Section 9 by relating our results to
some earlier research in this area.

2. THE MODEL

The set of potential players is P= [0, 1]. The set of probability measures
on P is M. For now there will be only two periods; later we will discuss the
n-period case. The set of actions available to player p in each period t=1, 2
is A, which we take to be a compact convex subset of a Euclidean space.
An outcome of the game in period ¢ is a measurable map x,: P — 4; the
space of all such maps is x,, and X=X, xX,. In place of x,(p) we shall
write x?.
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We will need to view D= X x M as a topological space. We view D as
the space of measures over 42 x P which are degenerate in the first com-
ponent: the support of d=(x, )€ D is the closure of the graph of x. For
technical reasons, it will frequently be convenient to work not with D but
with the space of all measures over 42 x P, which we denote D. We endow
D (and thus D) with the weak* topology, which is defined as follows. Each
continuous real valued function g: 42x P — R induces a pseudometric p,
on D; if 4, 4’ € D, the distance is given by

puld, )= (. p) e, dp) = [ 5 ) 4 (0 ).

The weak* topology is the weakest (that is, coarsest) topology which
makes all of these pseudometrics continuous. Consequently, d,—d iff
pgld,, d)— 0 for all continuous functions g. The space D is not closed in
this topology: a sequence of degenerate measures can converge to a non-
degenerate one. Indeed, it can be verified that any measure can be
approximated by a sequence of degenerate ones,! so that the closure of D
is D.

The payoff function n: Px 42x D — R gives each player’s payoff as a
function of his own action and the joint distribution of types and actions.
We also use the notation m?(x?, x, u) in place of n(p, x?, x, u). We will
assume that

(A1) = is uniformly continuous with respect to p, for some con-
tinuous function g: 42x P - R.

Observe that (A1) implies that = is continuous. Moreover, uniform con-
tinuity implies that = has a unique extension” to P x 4*>x D. This will be
important when we consider the possibility of equilibrium distributions,
that is, de D, d¢D. The relevant payoff function for this type of
equilibrium will be the unique extension of =.

We will focus on two polar cases of relative player size. We say that is
nonatomic if u(p)=0 for all p; u is finite if it has finite support. Note that
the payoff n? depends on p’s own action both directly and indirectly
through the effect that it has on the joint distribution of players and

! This can be shown by approximating the given measure by one with finite support, which
is approximated in turn by a continuous function.

21f de D, then for every ¢>0, the e-ball (d|p,(d, d) <) contains points in D. Extract a
sequence d, with p,(d", d) — 0, and let n?(x?, d) be any limit of n”(x?, d"). Any convergent net
d* - d must have the property that for all ¢>0 there is an «' such that a>a’ implies
pg(d® d)<e, so we can use the uniform continuity of = with respect to p, to conclude that
the extension is uniquely defined. Continuity now follows directly. For details on uniform
continuity see Kelley [6].
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actions. For notational simplicity we will sometimes combine these two
effects and write

nP[x, u] =n?(x*, x, p).

Continuity implies that if x=2x% almost everywhere w.r.t L, then
n?(x”, x, p) =n”(x?, %, p). With nonatomic players this means that no
single player has any influence on another’s payofl. Including p’s own
action as a separate argument allows an individual player to have a sub-
stantial impact on his own payoff. Notice that the nonatomic assumption
rules out games in which a player has little effect on most rivals, but has a
large effect on just a few of them. Thus, this type of game may be a good
model of a large impersonal market, but it cannot be a good model of a
large number of interrelated small markets. (With finite players, the
indirect effect of p’s own action on his payoff though D need not be trivial.)

The first equilibrium concept we shall consider is that of an open-loop
equilibrium. This is the Nash equilibrium of the game in which players
precommit themselves to a sequence of actions at the beginning of the
game. It will be convenient to have a concise notation for the outcome
obtained from % by replacing its pth component with x”. We will denote
this outcome %\x”. Let supp u denote the support of u. Formally

DEFINITION 2.1. An open-loop e-equilibrium relative to p is an XeX

such that for all pesupp u and x” € X?,

nP[%X, p] = nP[X\xP, u] —¢.
This says that given the actions of all other players, no player can gain
more than ¢ by changing his action. If =0 we shall speak simply of an
open-loop equilibrium, and indeed we shall not consider the case ¢ > 0 until
the end of the paper. We ignore players p ¢supp p as these players are
effectively not present in the game described by u.

Now we wish to generalize the idea of an e-equilibrium to the closure D
of D. (Recall that n” has a unique extension to D.) Any de D givesrise to a
measurable correspondence y: P =3 4% which assigns to each p in the sup-
port of u the set of actions y such that (p, y) is contained in the support of
d. It also gives rise to a marginal measure g over players. Note that the
following definition is only applicable to nonatomic games.

DEFINITION 2.2. An open-loop e-equilibrium distribution relative to
(nonatomic) u is a de D such that

(i) f=p (where [ is the marginal over P derived from d), and
(ii) for all (p, £?) e supp d, n”(%7, d) = n*(x”, d) —e.

Again, if ¢ =0, we refer simply to an open-loop distribution.
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For de D this definition differs slightly from Definition 2.1. If x € X fails
to be continuous as a function of p, then its graph is not closed. Since the
support of a distribution is by definition the smallest closed set of full
measure, the graph of the correspondence y is the closure of the graph of x.
Thus Definition 2.2 appears to be stronger than Definition 2.1 in that it
requires that (ii) hold for all X7 in the closure of the graph of x. However,
since 7 is continuous, it is apparent that (ii) must continue to hold on the
boundary. Consequently, the difference in the definitions is purely
technical. Alternatively, it would suffice to assume in (ii) that there exists a
dense subset of the support of d, and define y to be the correspondence
induced by this subset. By the continuity of = this is equivalent to both
Definitions 2.2 and 2.1.

As noted, we are concerned with equilibrium distributions only for non-
atomic games. These distributions should not be thought of as arising from
randomizations by the players, as we have not introduced mixed strategies.
Rather, these distributions are idealizations of situations in which nearby
players play quite different actions. For example, imagine that the dis-
tribution on players is uniform, and y? = {(0), (1)} for all p and ¢. This is
the limit of a distribution in which players between 0 and 1/n play zero,
those between 1/n and 2/n play 1, 2/n to 3/n play zero, and so on.

The following proposition shows that open-loop distributions of
nonatomic games can always be approximately “purified.” That is, they
correspond to the limits of open-loop &-equilibria.

PROPOSITION 2.1. If u is nonatomic, then for every open-loop equilibrium
distribution d there is a sequence x" of open-loop &"-equilibria such that
(x", u)—>d and " - 0.

Proof. For each n, divide the support of u into # nonintersecting inter-
vals (P,, .., P,) of measure 1/n and divide 4>= A4 x 4 into n* noninter-
secting squares of equal size 4;. Let s, =d(4,, P,). For each j renumber
the A, so that s, is positive for 4, through 4, . Subdivide P, into k; sub-
intervals P, such that d(-, P;)=s;. For each k, fix an a,€ 4,. Now
define x” on supp u by x"(p)=a, for pe P;. Thus x" is a degenerate
approximation of y. Clearly (x", u) — d; that x" is an ¢"”-equilibrium with
¢" — 0 follows from the continuity of 7. Q.E.D.

We will relate the open-loop equilibria to the perfect equilibria of the
game in which all players observe first-period play before choosing their
second-period actions. To define these “closed-loop equilibria” we
introduce the concept of a reaction function r: X, —» X,. The reaction
function specifies how second-period play will respond to the first-period
outcome.
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In the game u, we will require that r be insensitive to actions by players
outside of supp u, as such players are not actually present. We do,
however, allow r to depend on the play of a single player, even if u is non-
atomic. This is because we do not wish to confound the players’ payoffs,
which are insensitive to measure-zero deviations, with their information,
which includes the complete specification of first-period play. One might
imagine that with nonatomic players, optimal reactions should ignore
measure-zero deviations. The next section explores the conditions under
which this is true. We do not wish to place a priori restrictions on the reac-
tion functions for nonatomic u because with small but finite players
optimal reactions can be large.

In a closed-loop equilibrium, we require that x, be rational given r and
that r represents a rational response to first-period deviations.

DEFINITION 2.3. A reaction function r is a second period e-equilibrium
relative to £, and p if for all p and ¢ in supp u and all x4, x§e A,

nP[£\ X, r(£,\x]), u] = 2[R \x], H(E AN\ xE, p]—&.

In the above definition and subsequently the expression “r(XA\XI\xL”
means the second-period outcome obtained by replacing the pth com-
ponent of r(x,\x9) by x5.

DEFINITION 2.4. A closed-loop e-equilibrium path relative to pu is an
%€ X such that there exists a reaction function r satisfying

(i) ris a second-period -equilibrium relative to £, and y, and
(ii) for all pesupp u,

nP[ £, r(£)), p] = nP[R\ X, H(ZAXD), ] —e.

A closed-loop equilibrium is a closed-loop equilibrium path together with a
reaction function satisfying (i) and (ii).

Notice that this differs a bit from the standard formulation: usually r
must be an optimal response to all initial x,, not merely those which
represent a deviation by one player alone. However, these additional
responses are irrelevant to the equilibrium determination of X,. If an
equilibrium reaction function r exists for all x, then our definition and the
usual one yield the same sets of equilibrium paths. If an equilibrium reac-
tion function r fails to exist for some x, then there can be no perfect
equilibrium in the usual sense, but there may be in our sense.
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3. THE NoNATOMIC CASE

We are primarily interested in the relationship between open- and
closed-loop equilibria.

THEOREM 3.1. If u is nonatomic, then every open-loop equilibrium X is a
closed-loop equilibrium path.

Proof. We need only define r for initial profiles of the form %,\xf. We
set r(%,\x?)=%,\x{, where x£ is an optimal response by p to his own
deviation. By nonatomicity this clearly means that % is a closed-loop
equilibrium path. Q.ED.

If we had required that second-period equilibrium hold for all x,, and
not merely for one-player deviations from %,, the theorem would be: every
open-loop equilibrium is a closed-loop equilibrium path if and only if an
optimal response function r exists.

It is not true that every closed-loop equilibrium path is an open-loop
equilibrium: even though a deviation by player p has no effect on the
second-period decision problem of rivals, it need not be true that the rivals
do not react to his choice. Consider, for example, the pair of matrix games

2,2) (—4,49)]. )
[(4,_4) (0’0)]1npenod1

[ (4,4) (-10, —10)

(=10, —10) (0,0) :|m period 2.

Each player on P=[0, 1] selects a pure strategy and receives the u
weighted average payoff against all opponents summed over both periods.
Suppose u is uniform. Obviously players are nonatomic. Since the games
are unconnected and the first-period game is the prisoner’s dilemma, in any
open-loop equilibrium the first-period equilibrium is always (0, 0). This is
also a closed-loop equilibrium path. However, there is also a closed-loop
equilibrium path in which the prisoner’s dilemma is resolved and (2, 2) is
played in the first period. In the second period (0, 0) and (4, 4) are both
equilibria if played by everyone. The reaction function is that all players
play (4, 4) in the second period if everyone played (2, 2) in the first period,
otherwise everyone plays (0, 0) in the second period. Thus the reward to
defecting in period 1 is 2 but the penalty in the second period is 4, so no
defections will occur. Notice that although the game is nonatomic the reac-
tion function is atomic: if any one player defects then everyone else
responds.
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As the example shows, for open- and closed-loop equilibrium paths to
coincide a deviation by only one player must not affect the reactions of
others.

DerINITION 3.1. A reaction function r is nonatomic if 77(%,\ x{ )y=ri(x,)
for almost all g # p. Otherwise, we call the reaction function aromic.

THEOREM 3.2. Suppose that for given nonatomic p and each X, there is a
unique second-period equilibrium, that is, X, such that

nP[ Ry, %y, p1ZP[%), X\ X5, u] for almost all

pesupp p and all x5.

Then the unique reaction function is nonatomic.

Proof. Follows directly from the nonatomicity of m.

TuEOREM 3.3. With nonatomic y, every closed-loop equilibrium path with
nonatomic reaction function is an open-loop equilibrium.

Note that an open-loop equilibrium is always a closed-loop equilibrium
path supported by a nonatomic reaction function.

4. AN EXAMPLE

This section presents a two-period game in which each player’s payoff
depends on his own actions and the average actions of his opponents. For
a large but finite number of players, the game has a unique open-loop
equilibrium and two closed-loop ones. As the number of players goes to
infinity, one of the closed-loop equilibria has the same limiting path as the
open-loop one, while the other converges to an atomic closed-loop
equilibrium. In this latter equilibrium the second-period outcome is respon-
sive to deviations by single players, even though in the limit game no single
player can influence the payoff of any other. From Theorem 3.2 we know
that the limit game must have multiple second-period equilibria for the
equilibrium first-period outcome. Yet for any finite number of players there
is a unique second-period equilibrium. This illustrates two related points.
First, atomic reactions in games with a continuum of players are not
pathological: they can arise as the limits of finite-player equilibria. Second,
the uniqueness of second-period equilibrium need not be preserved in pass-
ing to the nonatomic limit.

In our example, all players have the same payoff function 7”(x”, x, U,
which depends on x only through its average x(u) = | x(p) du. We will only
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consider the distributions u” which place weight 1/n on n (identical) players
(0, 1/n, ..., (n—1)/n), and the limit p* which is uniform on [0, 1]. Thus
%(u")=Zx*/n, and Z(u*) =[5 x(p) dp.

In the example, all actions are considered to lie in the interval [0, 10].
The payoffs are

RP(x?, %, ) = 1P, F()
= (xf = 12— (x§)/2— (x§ = 2)? [1(x§ > 2)]

where I(x2 > 2) is an indicator function, taking on the value 1 if x§>2 and
0 otherwise, and 0 <A< 1.

Note that each player’s payoffs are strictly concave in his or her own
actions and that cross-player effects work through averages. This implies
that all the open-loop and second-period distributional equilibria are sym-
metric. In this section we consider the case A= 1.

We first study the limit game u*. In an open-loop equilibrium, X, is
independent of first-period play, so x? =1 is a dominant strategy, and the
unique open-loop equilibrium is (1, 5/2). This is a closed-loop equilibrium
path as well. To look for other closed-loop equilibria we solve for the
second-period equilibria as a function of X,. Straightforward computation
shows that for %, >0, we must have x£=%,=(4+ X,)/2, while for x, =0,
any %, between 0 and 2 corresponds to a second-period equilibrium. We
know that the only closed-loop equilibrium with a nonatomic reaction
function is the open-loop equilibrium, so other closed-loop equilibria must
have %, =0. It is easy to see that X, =0 can occur: take the reaction
function %, =1 if all players set x =0, and X, =2 if any player unilaterally
deviates. Other second-period outcomes can also arise in equilibrium, as
can a range of first-period outcomes whose average is 0. Note in particular
that there can be nonsymmetric and even distributional outcomes in the
first period.

Clearly atomic closed-loop equilibria cannot be approximated by open-
loop ones, but this would not matter if the atomic equilibria were somehow
“pathological.” They are not, as can be seen by considering the finite-player
version of the game.

We begin by solving for the unique second-period equilibrium relative to
4" as a function of %,. These equilibria, which are symmetric, are given by

nx,, 0<x,<2/n
Xp=r"(x%;)={ 2, X, =2/n
nx,/(1+ 2n)+4n/(1+ 2n), X, >2/n.
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We also note that the unique open-loop equilibrium has xP:=
(2n+ 5)/(1 + 2n), which converges to 1 as n— 0.

While for any » and %, there is a unique equilibrium, there is a sense in
which r*(0) converges to a multi-valued limit as n — co. As shown in Fig. 1,
as n grows, r"(x,) becomes steeper and steeper near X, =0, and “con-
verges” to r*(%,), the reaction function for u*, which is vertical at 0.

Another way of putting this is that p"(X,)=dr"(x,)/dx}= 1 in the
neighborhood of X, =0, no matter how large n is. Even though in the
n-player game, each player has very little effect on his opponents, the
equilibrium remains very sensitive to any one player’s actions. For X,
strictly greater than zero, we eventually have Xx;> 2/n, so that
p(%,)=4/(1 + 2n) converges to zero. This is the limiting behavior that one
expects: second-period play becomes insensitive to any individual player’s
first-period action. One would expect that closed-loop equilibria in this
region would be similar to open-loop ones, and that there is a sequence of
closed-loop equilibria whose path (X, r,(X,)) converges to the same limit
(1, 5/2) as the open-loop ones.

It is easy to check that x,=1/(n—1), r,(,) is another closed-loop
equilibrium, whose path converges to (0, 1). It is also true, although harder
to show, that these two are the only symmetric closed-loop equilibria of the
game.

In the example, the open- and closed-loop correspondences are both
well-behaved in passing to the continuum-of-players limit. Nevertheless, the
two concepts differ, even in the limit, but for natural reasons. In order that
all the closed-loop equilibria can be approximated by open-loop ones, we
would need stronger conditions which guaranteed that the continuum
game has a unique second-period equilibrium after every outcome and that
in the finite-players games the relative size of the cross-effects between
players is small compared to their own effects. We provided conditions of
this sort in an earlier version of this paper [2].

r
r* (i1)

r M(i1)

2/M  2/N

FIGURE 1
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5. UpPPER HEMI-CONTINUITY

To relate open- and closed-loop equilibria in games with finite but small
players, we will relate each of them to the corresponding equilibria with
nonatomic players. If the open- and closed-loop equilibria coincide in the
limit game, and both equilibrium correspondences are continuous with
respect to the measure over player types, then we can conclude that the
two sets of equilibria are close to each other when players are small but not
infinitesimal.

The set of open-loop equilibrium distributions lies in D and is thus com-
pact. In this section we introduce the notion of closed-loop equilibrium dis-
tributions, so that the closed-loop paths are compact as well. Thus the
question of upper hemi-continuity reduces to one of whether the graphs of
the equilibrium correspondences are closed. For open-loop equilibria this is
almost immediate. For closed-loop equilibria, we use the compactness of D
to argue that any limit of equilibrium paths can indeed be supported as a
closed-loop equilibrium by some optimal reactions.

The conclusion that we draw is that every limit of equilibria is an
equilibrium and every sequence of equilibria has a limit. If, with nonatomic
players, there is a unique closed-loop and unique open-loop equilibrium,
not only are they the same, but, as the players become “small,” all open-
and closed-loop equilibria must be close to one another.

THEOREM 5.1. Suppose that (A1) holds, that X" is an open-loop
equilibrium for u", and that &= (%", u") —>de D. Then d is an open-loop
equilibrium distribution of p.

Proof. As the proof is straightforward we give only a sketch. Since
d" — d, for each pair (p, y) in supp d, there is a sequence (p”", X"(p)) with
p" in supp u” such that p” converges to p and X"(p) converges to y. We
then argue that a profitable deviation for p against y in game u would, by
continuity, be a profitable deviation for p” against %, in u” for n sufficiently
large. Q.ED.

~

COROLLARY 5.1. If u" — u and %" is an open-loop equiiibrium for u, then
there is a convergent subsequence such that (%", u*) - de D and d is an open-
loop equilibrium distribution for p.

We must now introduce the notion of a closed-loop distribution de D.
As before, these distributions idealize situations in which nearby players
play different actions. It is important that distributions have this inter-
pretation, rather than being interpreted as mixed strategies. If players use
mixed strategies in period one, then a closed-loop equilibrium path will be
a first-period distribution and map from first-period realizations to second-
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period distributions, rather than a distribution jointly over both periods
and players.

The notion of a second-period equilibrium distribution is similar to that
of an open-loop distribution. New conceptual issues arise, however, in for-
mulating the notion of optimal responses to a deviation from the first-
period marginal distribution d,. As before, a distribution d, gives rise to a
correspondence y, which specifies the various actions “played by player p.”
The interpretation is that the distribution is an idealization of a situation in
which nearby players play different actions. Thus, instead of specifying that
there is a fixed reaction function r(£,\x?), we specify a family of reactions
to player p’s first-period play, with each reaction corresponding to a dif-
ferent action that player p is “supposed” to be playing, that is, for each
(p, £7) e supp d,, the reaction function is R(p, 2, xP). In equilibrium, we
will require that each player p is willing to play %7 when reactions are given
by R(p,%?,-). As with open-loop distributions, closed-loop distributions
can only be interpreted as idealized equilibria in nonatomic games. For
notational reasons, we shall suppose that R(p, X{, x?)e D, that is, a joint
distribution over both periods, rather than a distribution only in the
second period. We shall require that the marginal of R over AxP,
R,(p, %, x¥), shall actually equal d,, since the first-period marginal dis-
tribution is not affected by a single player deviating.

DerINITION 5.1. For a nonatomic distribution p, R(p, X¢,x{) i1s a
second-period e-equilibrium distribution relative to a marginal first-period
distribution d, (over 4 x P) if

(i) ji=p, (where jiis the marginal over P derived from d),
(ll) Rl(pa -’efs Xf) = dla and
(iii) for (p, £7)esupp R(qg, X1, x{) and any x§€ 4,

nP(%?, R(g, %1, x{)) = n°((%f, x§), R(g, X{, x{)) —&.

Since the definition is intended to make sense only in the nonatomic case
(hence the use of n”( ) rather than n?[ 1), the requirement is simply that
a player p playing £7 cannot gain by deviation in the second period.

DEFINITION 5.2. A distribution de D is a closed-loop e-equilibrium dis-
tribution relative to a nonatomic y if

(i) j=u (where f is the marginal over P derived from d),
and there exists an R(p, £, xf) such that
(ii) if (p, £)esupp d, then R(p, %7, X)) =4,
(iii) for all x¢, R(p, X7, xf)is a second-period e-equilibrium, and
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(iv) for all (p, £?)esupp d and all x”€ 4,

n?(%7, R(p, £{, 7)) 2 n?(x*, R(p, X{, x{)) —e&.

Condition (ii) requires that first-period play consistent with d does not
provoke a reaction in period 2. As in the definition of an open-loop dis-
tributional equilibrium, the notion of a closed-loop equilibrium in
Definition 5.2 differs in a technical way from the earlier Definition 2.4
when d is a unit mass on a point in D. Specifically, Definition 5.2 requires
that (iii) hold for any limit of (p, £7) € supp d, while Definition 2.4 does
not. Although R may not itself be continuous, the fact that = is continuous
is enough to establish the equivalence of the two definitions. All that is
required is that some R(p, X%, -) exist satisfying (iii). If (p”, X(p")) = (p, X*)
define R(p, £7,x?) to be any limit of a convergent subsequence of
R(p", #{7", xP). Evidently, by continuity of =, (iii) will be satisfied.

THEOREM 5.2. Under (Al) if (X7, %3) is a sequence of closed-loop
equilibrium paths relative to ", and (#7, %3, u,) — d, then d is a closed-loop
equilibrium distribution relative to . (Notice that in the statement and proof
of this theorem superscript n’s refer to the position in the sequence of
equilibria, while superscript p’s refer to players.)

Proof. We must construct a reaction function R such that (ii) and (iii)
are satisfied. For each (p, £?) e supp d let p” — p be such that £"(p") » £
(such a sequence must exist since (%7, pu)—d). If x?#4%f, define
R(p, %7, x?) to be any accumulation point of (£7, r*(£7\x{*")) and define
R(p, ¢, %#)=d. Theorem 5.1 shows that the R thus constructed always
prescribes equilibrium play. Now we must argue that no player can gain by
deviating in the first period. If there was a gain, there would be
(p, %?)esupp d and x” such that n?(%”, d) <n”(x?, R(p, ¢, x{)) —e&. But
then consider the sequence p" — p, £"(p") — 7. Since = is continuous in p,
and (%7, r"(X7\ x{#")) = R(p, £¢, x?), for n large enough p" would gain by
deviating to x? in the game u". Q.E.D.

To illustrate the import of Theorem 5.2, we examine the example of
Section 4, in the case A <3. In this case the unique second-period non-
atomic distributional equilibrium is

Xy=r(x)=4x,/(1-4).

It follows directly that there is a unique closed-loop equilibrium in which
%, =X, =0, and which is also open-loop. From Theorem 5.2, it follows that
for n large all open- and closed-loop equilibria have x, and X, close to
zero, and consequently the two are approximately the same.
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6. THE DIFFERENTIAL APPROACH TO LowER HEMI-CONTINUITY

We now wish to consider whether equilibria are lower hemi-continuous;
that is, whether a given nonatomic open- or closed-loop equilibrium has a
close approximation in a similar game with many small atomic players. If
this is true for both open- and closed-loop equilibria, then we can conclude
that every open-loop equilibrium in the large finite game has a closed-loop
equilibrium nearby.

There are two approaches to lower hemi-continuity. One, explored in the
next section, is to weaken the definition of equilibrium by considering
g-equilibria with &> 0. Alternatively, we can make various differentiabiltity
assumptions and use a version of the implicit function theorem. This latter
program is complicated and is carried out in another paper (Fudenberg
and Levine [3]). Here we summarize how the results of that paper apply
to the example of the previous section with A=1.

The relevant equilibrium to which the theorem applies is the limiting
open-loop equilibrium at (1, 5/2). This satisfies the first-order conditions

on’ 1
a—x-f;=x{’—1+[;xg]=0
(6.1)
on’? L 1 _
az;= —3x2+4+ (X, + %)+ ;l-(xg—-2x2) =0,

which we can write as ¢(x) + (1/n) (%) =0. Since

poely

is nonsingular, and the perturbing term y(x) is uniformly C’ bounded, for
n sufficiently large the implicit function theorem guarantees a solution to
(6.1) near ¢(x)=0. That is, for n large there are open-loop equilibria near
to the open-loop equilibrium (1, 5/2) of the nonatomic game.

The case of closed-loop equilibrium is similar, but more complicated.
The first-period condition is

1 1
b0+ [ Lt [ {g e =0 62)

where the final term arises from muliplying dn”/0x times 0r,/0x,. Again as
n— o0, (6.2) approaches ¢,(x)=0 and the implicit function theorem
applies. In Fudenberg and Levine [3] we generalize this line of argument
to a larger class of nonsymmetric games.

Finally, consider the atomic closed-loop equilibrium of the limit game.
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Here the argument fails because dr”/0x; does not vanish as n— oo.
Moreover, lower hemi-continuity fails as well. In the finite games, all the
equilibria with X, approaching 0 are symmetric; in the limit, there are also
many nonsymmetric equilibria.

7. THE &-EQUILIBRIUM APPROACH TO LOWER HEMI-CONTINUITY

Hereafter we shall suppose that u is finite. We shall accordingly drop the
nonatomicity assumption.

Obviously it is unreasonable to expect that open-loop and closed-loop
equilibria are exactly the same with finite players: in general it will be
optimal to respond in period two to deviations in period one. Consider
instead the assertion that “open-loop equilibria are almost closed-loop
equilibria in large games.” There are two things we might mean by this. We
might mean that every open-loop equilibrium has a closed-loop
equilibrium nearby. This is not generally true, as we have seen. Alter-
natively we might weaken the closed-loop concept and assert that open-
loop play is “almost” optimal. It might be plausible to suppose that players
will not deviate provided the gain from doing so is very small. Thus we
might be interested in not only equilibria, but all e-equilibria with ¢ a very
small number. The assertion we shall now state and prove is that every
open-loop equilibrium is an e-closed-loop equilibrium where the smaller is
the interaction between players, the smaller is &.

With this in mind we define

DerFINITION 7.1.  The atomicity of a game u is

atom(p)= sup |m’[%, p]—mP[R\x 4]l

p*q.%,x

This is a measure of the largest effect any player can have on another. In a
nonatomic game continuity implies atom(u)=0.

THEOREM 7.1. Every open-loop equilibrium is a closed-loop e-equilibrium
where ¢ =2 atom(u).

Proof. Let % be an open-loop equilibrium. Define r as in the proof of
Theorem 3.1 so that p reacts to himself by responding optimally, but no
one else responds at all. We need only show that following any X,\x{,
#,\ x§ is e-optimal for p # ¢ with ¢ =2 atom(u). If not, there is player p and
action x2 such that

nP[£\x], £\ x5\x{, u] — nP[£\ x4, u] > 2 atom(p).
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We know n?[%, u]—n[£,, £\ x4, ] <0, because %, is a second-period
equilibrium given %,. We also know that |mP[%, u]—nP[%\x% p]l<
atom(u) and that |n?[£,, £\ x£, p]1— nP[£,\x, £, \x5\x9, u]| < atom(u).
Combining these inequalities, we see from the inequality triangle that
2 atom(p) < 2 atom(p), a contradiction. Q.E.D.

Notice, incidentally, that atom(u) small only says that the effect of a
single player deviating is small; the effect of all rivals simultaneously
deviating is potentially as large as (n— 1) atom(u), where n is the number
of players. In large games the aggregate effect of rivals can be quite large.
Indeed if we have a sequence of n-player games u" we can clearly have
lim,y_ ., atom(u")—0 and limy_ o (n—1) atom(u")—> o0 SO that
individual effects vanish, but aggregate effects become large.

Now we consider whether a closed-loop equilibrium is an g-open-loop
equilibrium. We can say little about this without very strong assumptions.
First, there is no reason subsequent play should be relatively insensitive to
deviations by just one player. Although such deviations change each rival’s
decision problem only a little, a small perturbation of a game may shift the
equilibrium quite a lot, even if each player’s payoff is “very concave” in his
own actions. Second, even if subsequent play only moves a little, this
response is by all players and each player moving a little can have a large
aggregate effect on the first-period decision problem. Moreover, in contrast
to the infinite case, assuming that the second-period equilibrium is unique
does not solve any of these problems.

8. THE MANY-PERIOD CASE

While we have presented only a two-period model, the results of this sec-
tion extend to games with any finite number of periods. A closed-loop
equilibrium with many periods is (as before) the same as a subgame-perfect
equilibrium except that we only require the reaction functions to be defined
for unilateral deviations from the equilibrium path. An open-loop
equilibrium is still a closed-loop equilibrium if players are nonatomic, and
every closed-loop equilibrium with nonatomic reaction functions is an
open-loop equilibrium. The analog to Theorem 3.2, which provides suf-
ficient conditions for reaction functions to be nonatomic, requires the
assumption that there is a unique Nash equilibrium in every subgame.

How do the results on e-equilibrium change in games with more than
two periods? The formal answer is that they do not. The atomicity of a
game is the maximum effect one player has on any other (moving in all
periods at the same time), and every open-loop equilibrium is a closed-loop
equilibrium with & =2 atom(u). Thus increasing the number of periods in a
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“stationary” game does not change the required epsilon if the payoffs are
normalized so that the “total payof” does not increase with the period
length. One example of this is a sequence of T-period games with an
L-period lag structure, that is,

1 T
np[x, ﬂ] =F 7 Z up[xt—la ey Xy Lo ”’]1
T-L t=L+1

as is the case, for example, in Maskin and Tirole [8]. Of course in non-
stationary games epsilon cannot be expected to be independent of the num-
ber of periods. It is also essential that payoffs be normalized by 1/(7— L),
so that the overall size of payoffs does not increase with the length of the
game.

The interpretation of Theorem 7.1 does change with the number of
periods, because the set of closed-loop e-equilibria typically grows with the
horizon. Indeed, Fudenberg and Levine [1] show that as the horizon
grows, the set of closed-loop ¢-equilibria of this game approaches the set of
infinite-horizon closed-loop equilibria. Thus, knowing that the open-loop
equilibrium is a closed-loop equilibrium is “less informative” in games with
more periods, because they have more closed-loop equilibria. Why does
this matter? A story one might tell to justify open-loop equilibria using the
e-equilibrium approach is: First, one accepts e-equilibrium as a descriptive
model of behavior, arguing that players do not bother to attain small gains.
Then one argues that in the set of (possibly quite complicated) closed-loop
e-equilibria, the open-loop equilibrium is a natural focal point because of
its simplicity. This focal point argument may become less compelling as the
set of equilibria increases. In the prisoner’s dilemma, “efficient” outcomes
become ¢-equilibria once the horizon is long enough and these may have
an equal claim to being “focal.”

9. RELATED WORK

The literature most closely related to our paper is that on the limit
points of monopolistic competition. Monopolistic competition can be
viewed as a two-stage game in which firms choose quantities in the first
period, and an exchange equilibrium occurs in the second. With this inter-
pretation, monopolistic competition is a closed-loop equilibrium and price-
taking is open-loop. Consequently, Roberts’ [10] results on the limit of
monopolistically competitive equilibria can be viewed as a special case of
ours.

Green [4] also studies the relationship between price-taking and
monopolistically competitive equilibria with many firms, but differs in
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treating “anonymous” equilibria of infinitely repeated games. Finally,
papers by Green [5] and Walker [11] provide sufficient conditions for
the (open-loop) Nash equilibrium correspondence to be upper hemi-
continuous in the number of players.
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