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INCOMPLETE INFORMATION BARGAINING WITH
OUTSIDE OPPORTUNITIES*

DREW FUDENBERG
DaviD K. LEVINE
JEAN TIROLE

We consider two kinds of “outside opportunity” that a seller of an indivisible
good might have: selling to a different buyer and consuming the good herself. In both
models the seller is uncertain about the buyer’s valuation, and becomes more
pessimistic over time. When the seller becomes sufficiently pessimistic, she prefers
the outside opportunity, so she will not bargain indefinitely with the current buyer.
Despite the resulting finite-horizon nature of negotiations, the link between the
buyer’s willingness to accept an offer and the seller’s eagerness to go “outside”
generates multiple equilibria.

L. INTRODUCTION

We consider two kinds of “outside opportunity” that a seller of
an indivisible good might have in addition to the “inside opportuni-
ty” of selling to the buyer with whom she is currently bargaining:
selling to a different buyer and consuming the good herself. In both
models the seller is uncertain about the buyer’s valuation, and
becomes more pessimistic over time. When the seller becomes
sufficiently pessimistic, she prefers the outside opportunity, so she
will not bargain indefinitely with the current buyer. Despite the
resulting finite-horizon nature of negotiations, the link between the
buyer’s willingness to accept an offer and the seller’s eagerness to go
“outside” generates multiple equilibria. Consequently, the outside
opportunity in our model has a very different effect than in the
complete information models of Binmore-Rubinstein-Wolinsky
[1985] and Shaked-Sutton [1984].

In the many-buyer model the seller bargains with one buyer at
a time, and makes all the offers. At any time the seller may break off
negotiations in order to bargain with someone else. We use this
highly stylized model to make a fairly general observation: with
many buyers the seller’s reservation value exceeds her consumption
value, so that she need not continue to negotiate with a buyer even
when it is common knowledge that there are gains from trade
between them. In addition, we show in Section IT1, if the seller can
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costlessly switch buyers, the outside opportunity may allow the
seller to commit to a fixed price.

When the seller can costlessly switch buyers, the credible
take-it-or-leave-it price she sets is quite generally the same one the
seller would charge could she commit herself to any desired pricing
path. In this equilibrium the seller switches buyers over time.
Depending on the parameters, there may also exist an equilibrium
in which the seller charges a price that is certain to be accepted, and
does not switch buyers if this price is unexpectedly refused. The
multiplicity of equilibria can be thought of as due to an externality
between the different buyers: if future buyers will play “soft,” i.e.,
are likely to accept high prices, the seller is likely to switch buyers,
and thus the current buyer should also accept a high price. On the
other hand, if future buyers will play “tough,” the seller is less likely
to switch, so the current buyer can play tough as well.

The seller always prefers to face many buyers, while each buyer
would prefer to be the only trading partner. More surprisingly,
depending on which equilibrium prevails with many buyers, total
expected surplus may decrease in moving from one to many buyers,
even though the total potential surplus is increased. Thus, given
that there are many potential buyers, total surplus can sometimes
be increased by requiring the seller to negotiate with only one of
them. Further, we find that with many buyers the effects of
shrinking the time period between offers to zero enables the seller
to appropriate all the surplus—in contrast to the one-buyer model
in which a shorter time period transfers more of the surplus to the
buyers.! With many buyers and a short time period the seller can
easily extract all potential surplus by switching buyers.

In Section IV we consider the case in which the seller faces an
additional delay cost in switching buyers. Because of this cost the
seller must become sufficiently pessimistic before switching buyers,
so that the take-it-or-leave-it strategy may not be credible. In this
case the equilibrium may involve “haggling”: the seller initially
makes a high offer; if this offer is refused, the seller’s equilibrium
payoff drops, but she follows with a lower offer to the same buyer
before switching. We give an example of haggling equilibrium that
has the same price path as the “tough seller” equilibrium that
Fudenberg-Tirole [1983] derived in a model with one buyer and two
periods. Our model is a hybrid of finite and infinite-horizon

1. This is the Coase conjecture. For a discussion see Coase [1972], Stokey
[1980], Bulow [1982], or Gul-Sonnenschein-Wilson [1985].
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bargaining, in that it allows traders to continue bargaining indefi-
nitely, but results in negotiations of finite length. However, we
should not overstress the analogy with the two-period model,
because the number of equilibria and the comparative statics can
differ.

Finally, Section V considers the model of a seller who faces
only one buyer, but can consume the good herself. Once again the
seller’s decision of when to use her outside opportunity allows us to
construct multiple equilibria. In our example, in one equilibrium,
the seller consumes in the second period; while in the other, she
makes a second offer. The “early consumption” equilibrium corre-
sponds to the “always switch” equilibrium in the many-buyers
model. Indeed, play between the seller and an individual buyer in
the always-switch equilibrium is exactly as if the “switch” option
were replaced by a consumption option of the same value. Our
results imply that there are also multiple equilibria in the price-
discrimination model of Stokey [1980], Bulow [1982], and Gul-
Sonnenschein-Wilson [1985] if the monopolist has an opportunity
cost of producing in this market, or can sell its product for scrap at a
known price.

II. THE MULTI-BUYER MODEL

The seller has a single indivisible object for sale. The seller
derives no utility from having the object in her inventory, and
storage is costless. It is common knowledge that the seller’s valua-
tion is zero. There are an infinite number of ex ante identical
buyers. Each buyer’s valuation b is known only to him. The buyer’s
valuations are independently and identically distributed on the
interval [Q,E 1, b > 0, according to the cumulative distribution
function F(b), which is common knowledge. Additional assump-
tions on F are discussed below. The seller and all buyers have
discount factors g, 05, respectively.

Time is indexed by periods ¢t = 1, . .. At time 1 the seller begins
to bargain with the first buyer by naming a price that the buyer may
accept or reject. If the buyer rejects, the seller has the choice of
making a second offer to the same buyer in period 2, or to break off
negotiations with this buyer and begin negotiations with another. If
the seller does choose to switch buyers, she must wait a lag of d
(“delay”) periods before making her next offer. If d = 0, the seller
can make an offer to the second buyer in period 2, so that switching
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is costless. Thus, the seller makes all the offers, and the seller
cannot negotiate with several buyers at once. We assume that the
seller cannot recall a buyer once having passed on to a new one.

One feature of this game is the fact that the buyer does not
make any offers. It may therefore be regarded as an extension of the
infinite-horizon one-sided bargaining game studied by Sobel and
Takahashi [1983], and Fudenberg, Levine, and Tirole [1985a], to
the case in which there are many buyers. If d = =, the games are the
same.

A perfect Bayesian equilibrium of our game is a (history-
contingent) sequence of prices and switching decisions for the
seller, of buyers’ acceptances or refusals of the offers, and of
(updated) beliefs about the buyers’ valuations satisfying the usual
optimality conditions and Bayes rule. This solution concept is a
weaker version of the sequential equilibrium of Kreps-Wilson
[1982] which is not defined for games with a continuum of actions.

A useful fact about equilibrium is

LEMMA 1 (Successive Skimming). In any perfect Bayesian equilib-
rium, at any time, the seller’s posterior about the valuation of
the current buyer is the seller’s prior truncated at some value £;
Le., the posterior is F(b)/F(8) for b < 8, and 1 for b = 3.

Proof. Omitted; see Fudenberg-Levine-Tirole [1985a]. The
lemma follows from the “incentive-compatibility” constraints and
the fact that high-value buyers lose more by waiting than low-value
ones do.

In this paper we shall restrict attention to those perfect
Bayesian equilibria that are stationary and monotone. By stationar-
ity we mean that the strategies used by the seller and the current
buyer can depend only on events that have occurred since this
particular buyer arrived. Furthermore, if the seller’s beliefs about
the buyer do not change from one period to the next, then her offer
does not change, either. By monotonicity we mean that the seller’s
(expected) equilibrium payoff at the beginning of a period strictly
decreases as the sellers’ beliefs about the current buyer become
more pessimistic; i.e., as the truncation point 3 decreases.

We should point out that if the seller is restricted to strategies
that depend only on her current beliefs, and the buyer to strategies
that depend only on his value and the seller’s latest offer, then the
equilibrium is stationary (obviously) and monotone. Since the
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buyers who choose to buy depend only on the latest offer, by
successive skimming, any pricing strategy charging more than b
(and not always rejected) yields strictly more if the cutoff point on
beliefs 3 is larger. Since rejection of the type of offer considered
above (which exceeds b and is not rejected by everyone) strictly
lowers the prior 3, the equilibrium is monotone.

ITI. No DEeLAY COSTS

This section analyzes the case in which switching buyers is not
costly, so that d = 0. We also assume that the cumulative distribu-
tion function of buyers, F(b), is twice continuously differentiable.
We show that, depending on the parameters, there are at most two
possible payoffs for the seller in a stationary, Monotone equilibri-
um, namely, (i) b and (ii) the payoff when the seller can commit
herself to a single take-it-or-leave-it price. The latter is always an
equilibrium payoff; the former requires that b be sufficiently large,
and, in particular, does not exist if b equals the seller’s valuation of
zero. We proceed by constructing equilibria that yield these two
payoffs and then show that no other payoffs can arise in equilibri-
um. We then compare the equilibria to the one-buyer case.

A. No-Switching Equilibrium

In this equilibrium the seller charges b each period regardless
of the history of the game, and the seller never switches away from
the current potential buyer. The buyer of valuation b thus accepts
all offers p less than or equal to (1 - dp)b + 0gb, so the seller’s
posterior after an offer of p is refused is B(p) = (p — dgb)/(1 — 65). A
necessary condition for this equilibrium is that the seller does not
wish to choose a price above b, given that b is expected next
period:

(1) b= max [p(1 — F(8(p))) + b5 F(8(p))b].

Condition (1) is also sufficient. In a no-switching equilibrium,
buyers expect b next period and so will accept an offer if and only if
b = B(p). Given this, (1) says that it is best for the seller to charge b
right now.

B. Switching Equilibrium

In this equilibrium the seller announces that she will charge a
single take-it-or-leave-it price b to each buyer, and switch buyers
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until p is accepted. The buyer of valuation b accepts all prices less
than or equal to b. The price p is chosen to be the “precommitment”
price the seller would choose if she could precommit herself to a
take-it-or-leave-it price. The fact that D is the seller’s equilibrium
choice without precommitment, but with the buyers playing
“truthfully,” should be intuitive. Since the seller always switches
buyers, her choice problem is stationary, so from dynamic program-
ming we know that the single-period and multi-period optimiza-
tions are identical. Formally, let Vg be the seller’s value without
precommitment, and let V§ be the seller’s value with precommit-
ment:

Vs = max [(1 — F(p))p + F(p)ésVy]

@) Vs =max 3 (1 - F(p))p(F(p)as)

t=0
=max (1 - F(p))p + ésF(p) V5.

Since Vs and V7§ satisfy the same necessary and sufficient
functional equation, they have the same solution(s).

LEMMA 2. If F"(p) > 0, the price that solves (2) is unique.
Proof. A simple calculation.

We conclude that the precommitment price(s) are always
equilibrium outcomes. Moreover, we can show that if the seller can
precommit herself to any time path of prices, her optimal strategy is
to charge a fixed price. Riley and Zeckhauser [1983] prove a similar
result in a related context. In outline, the optimal precommitment
strategy is to always switch buyers. This has two effects: it maxi-
mizes the buyers’ reservation values B(p) for every price path; and it
also means that every period the seller faces the most favorable -
distribution of buyer valuations. Because the seller always switches,
her maximization problem is stationary. Thus, a constant price is
optimal.

A necessary and sufficient condition for the precommitment
price to strictly exceed bis

(3) max p(1 — F(p)) + 6sF(p)b > b.

This condition overlaps with condition (1), the sufficient condition
for a no-switching equilibrium with price b. The best price may be b
when buyers expect to face b next period; but if buyers expect the
seller to switch, their reservation value rises to their valuation, and
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the return to the seller for charging prices above b increases. Thus,
for a range of parameter values the “best possible” and “worst
possible” outcomes, from the point of view of the seller, can occur.
The multiplicity arises from the feedback between the seller’s
switching decision and buyers’ reservation values, and is a general
feature of many-player bargaining.?

C. Characterization of Stationary Monotone Equilibria

The “no-switching” and “full switching” equilibria by no
means exhaust the list of possibilities. There can be “semi-
switching” equilibria in which the seller randomizes over the
switching decision. However, we can show that these two types of
equilibria generate all stationary monotone equilbrium valuations
for the seller; that is, either Vg — b, or Vg = V5.

First, we observe that we must have Vs = b, since the seller can
always charge b which will be accepted. (This can be proved by a
straightforward extension of Lemma 2 of Fudenberg-Levine-Tirole
[1985a].) Next, we claim that in any stationary monotone equilibri-
um, if Vg > b, then the seller always switches buyers. If the seller
were not to switch when price p, was refused in period ¢, the value of
continuing with the old buyer would have to be at least as great as
that of facing a new one. But if p, is refused with probability strictly
between zero and one, by monotonicity the seller is worse off
sticking with the old buyer than she was before the offer was
rejected; and by induction worse off than when she first met the old
buyer. However, by stationarity, the new buyer is as good as the old
one was initially. Thus, either p,,, — b = Vs, or p, is refused with
probability one. The latter is impossible, for if the seller makes an
offer that everyone refuses, her beliefs do not change and she must
make the same offer again. Subsequently it must be rejected again,
and the seller’s present value is zero, which contradicts V, = b.

We have thus established

PROPOSITION 1. If delay costs are zero, then either Vs = b, or Vg =
Vs, the precommitment value. For certain parameter values
both are equilibrium payoffs. For b sufficiently small, there

2. Some readers may be puzzled by the fact that in always-switch equilibrium,
some buyers bargain when they know that they will not be able to trade. One
justification is that, without “entry” costs, receiving an offer is a weakly dominant
strategy. If all buyers had positive entry costs, then low-valuation buyers would
never enter; knowing this, the seller would set a higher price, which would deter still
more buyers and the equilibrium would unravel as discussed in Fudenberg-Lev;ne-
Tirole [1985a, Sec. 5.5]. This unraveling could be avoided and the always-switch
equilibrium restored, if some buyers had negative “entry costs” because they enjoyed
bargaining.
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exists a unique equilibrium. In this equilibrium the seller never
haggles; i.e., she charges a fixed price and switches buyers in
case of refusal.

We do not know whether there are nonstationary equilibria with
other equilibrium payoffs.

D. Comparison with a Single Buyer

Next we compare the equilibrium outcomes with the case of a
single buyer. The condition for an equilibrium with price b, equa-
tion (1), is also necessary and sufficient for an equilibrium with
price b in the one-buyer case. Moreover, from Fudenberg-Levine-
Tirole [1985a] we know that with b > 0 the one-buyer equilibrium is
unique. Thus, when (1) is satisfied, the seller is at least as well off
facing many buyers. When (1) is not satisfied, the one-buyer
equilibrium will yield the seller a payoff greater than b. However,
this value will not be greater than that if the seller could precommit
to a price path against the single buyer, which in turn is not greater
than the value when the seller can precommit against many buyers.
Thus, again the seller is at least as well-off. Conversely, if F” > 0,
then a comparison of first-order conditions shows that the switch-
ing-equilibrium price is never less than that with one buyer.
Consequently, each buyer prefers the seller to have no outside
opportunities. This is very natural—the outside opportunities put
the seller in a stronger bargaining position.

More surprising are the efficiency of the switching and the
no-switching equilibria for parameter values such that both exist.
We can show that, depending on the parameter values, either
equilibrium can yield greater expected total surplus. As all buyers
but the first have zero surplus in the no-switching equilibrium, this
implies that the expected aggregate surplus may decrease in moving
from one potential buyer to many of them, despite the fact that the
“potential surplus” is larger with many buyers.

In Fudenberg, Levine, and Tirole [1985b] we constructed an
example in which equilibrium expected surplus is indeed lower with
many buyers. The example has identical discount factors 65 = 65 = 6,
with é near 1, and F(b) uniform on the interval [1, b],withb = 2 —
6 + ¢. In this example both the switching equilibrium and the
no-switching equilibrium exist, and the precommitment price p is
just above the no-switching price of 1. Thus, raising the price from 1
to p does not help the seller much, but it does hurt the buyers as a
group, so the total expected surplus is lower at p than it would be at
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the no-switching equilibrium. It follows that total expected surplus
is higher at the only equilibrium with one buyer (that is, the
no-switching equilibrium), than it is at the switching equilibrium
with many buyers.

It is much less surprising that expected surplus can be higher
with many buyers. The easiest example is when = 1; that is, the
periods are “short.” In this case the seller’s return to a fixed price p
is p itself, so the seller charges b, which equals the expected surplus.
With just one buyer the maximum realizable surplus is the buyer’s
valuation b, and so the maximum expected surplus is the expecta-
tion of b.

So we conclude

PROPOSITION 2. With no delay costs, the seller prefers facing many
buyers; the current buyer prefers being the only buyer. Total
expected surplus can be bigger or smaller with many buyers
than with one.

IV. DELAY CosTS

We now consider the case d > 0, so that switching buyers
imposes an extra delay cost on the seller. This cost means that the
seller must become “sufficiently pessimistic” about the current
buyer before she finds it worthwhile to switch, so that the “always-
switch” equilibrium exists for a smaller set of parameter values.
The equilibrium path may require the seller to make n > 1 offers to
the same buyer before switching.

It remains true that if a no-switching equilibrium exists, it is
the same as the equilibrium with only one buyer. However, the
delay cost makes the seller less eager to switch, and thus the
no-switching equilibrium exists for more values of the parameters.
If we let W(b) be the seller’s valuation in the one-buyer equilib-
rium when the distribution is truncated to [b, b] (which exists and is
unique from Proposition 1 of Fudenberg-Levine-Tirole [1985a]),
then a necessary and sufficient condition for the existence of a
no-switching equilibrium is that b = 6¢Ws(b). If this condition is
satisfied, then no matter how pessimistic the seller becomes, she
will never prefer to switch rather than to charge b now. Conversely,
if this condition is not satisfied, then after a sufficient number of
rejections the seller will strictly prefer to switch (since from Fuden-
berg-Levine-Tirole we know that in the one-buyer equilibrium the
seller eventually charges b).
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In the no-delay case the bargaining process has a very special
outcome. When b is low, the equilibrium is unique with the seller
always switching: there is no haggling. When b is high, there are
other equilibria in which the seller makes an intermediate offer and
then either switches or lowers her price to b. This is not haggling in
the strict sense because the seller can do just as well by not offering
the lower price.

In the delay case an example in which P has finite support
shows how delay costs can lead to strict haggling. In the example,
d = 3, 65 = 65 = %, and each buyer has one of three values: b very
small (1/32, say), b = 1, or b = 5/2 with prior probabilities, Mo = 7o =
Mo = %. In equilibrium the seller first charges a new buyer P, = 7/4 >
b — 1. If this is refused, she then charges price b = 1 to the same
buyer. If this is also rejected, she switches buyers. Buyers b and b
reject offers exceeding their valuations and accept all others. Buyer
b is indifferent between accepting p;, now and accepting an offer
equal to b tomorrow. He accepts any offer not exceeding p;. (For
what happens when off-the-equilibrium-path offers above Dy are
made, see Fudenberg-Levine-Tirole [1985Db].) In an earlier version
of this paper [1985b] we showed that this is an equilibrium and that
the equilibrium is robust with respect to a small perturbation of the
parameters. It may also be checked that it is stationary and
monotone.

So we have obtained robust examples of equilibrium in which
the seller haggles for a while, becomes pessimistic, and prefers to
switch despite the delay cost.

ProPoSITION 3. With strictly positive but finite delay costs, the
seller may haggle and switch.

Play between the seller and each buyer in the example is
exactly that derived in the two-period, one-buyer, two-type model
of Fudenberg-Tirole [1983] for the case of a tough seller. There, in
the notation of this paper, the seller charged p; in the first period
and then b in the second. The finite horizon that is exogenous in
Fudenberg-Tirole is derived endogenously here by adding a third
type b. Finite-horizon bargaining models without outside opportu-
nities have been criticized because players may stop bargaining
when it is common knowledge that there are gains from trade
between them. While this criticism is justified, we see that similar
behavior can be expected with an infinite horizon if there are
outside opportunities.
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V. CONSUMPTION AS AN OUTSIDE OPPORTUNITY

Here we develop a model of a different kind of “outside”
opportunity, namely the seller’s option to consume the good herself.
This possibility can generate multiple equilibria, just as the switch-
ing decision did. In each case the buyers are willing to pay more
when the seller is more likely to use the outside opportunity. This
willingness in turn makes the seller more pessimistic after an offer
is refused and thus justifies her eagerness to go “outside.”

Following Gul-Sonnenschein-Wilson [1985], we can adapt the
model to analyze price discrimination by a durable goods monopo-
list. Imagine that there are a continuum of “small”’ consumers
indexed by their willingness to pay. In the price discrimination
model, in each period, the seller makes a price offer. This price is
then accepted only by buyers with a high willingness to pay. The
bargaining model is applied by reinterpreting probabilities as
fractions of the population. Direct consumption by the seller can
then be interpreted as an alternative elastic demand, or more
loosely as an opportunity cost. Then the multiplicity of equilibria
can be attributed to “bandwagon effects”: if most buyers purchase
today, the seller will not choose to produce tomorrow, so that buyers
should indeed purchase today.

We content ourselves with a simple example of the multiplicity
of equilibria.

Assume that the buyer’s valuation is uniformly distributed on
the interval [0, 1], that the seller’s consumption value is ¥, and that
both players have discount factor § — %. We shall construct a “tough
seller” equilibrium, in which the seller consumes in the second
period, and a “soft seller” equilibrium, in which the seller does not
consume until period 3.

Define 8, —= 3/8 + 8 2. When the seller’s beliefs are uniform
on [0, 8] and the buyers believe that the seller will consume next
period, the seller is indifferent between consuming now and charg-
ing the optimal price p, = 8,/2 + 1/16. The tough-seller equilibrium
has the following form: first-period price p is accepted by all buyers
with valuation at least 8*( D), where

84(p) — p 0=<p=§g
PP ap-1/4  pep=1.

If the seller charges a price less than Bo, the buyer accepts if the
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price is less than his valuation, so the seller’s posterior if such a
price is refused is that 8 < Bo- This leads the seller to consume in the
second period, so that the buyer was correct to accept if the
first-period price was below his valuation. If the first price is above
Bo, the seller’s posterior if the price is refused will also exceed Bo, SO
the seller would not consume in the second period. This is why 8* is
discontinuous at p = 3,. Given B*(p), the seller’s best choice is to set
p* =9/16 < 6,

In the soft-seller equilibrium the seller does not consume in the
second period, unless she has chargedp <p = 3/48, + 1/32 < p*.
The price p is chosen so that, if the seller changes p, and the buyer
expects the seller to make a second offer, the seller’s posterior is
exactly 8,. The buyer’s first-period reservation price in this equilib-
rium is 3(p), where

~ p O<p=<p
B(p) = N
43p—-1/24 p<p=<1.

If the seller charges a price above D, the seller offers a second price
next period, while prices below p lead the seller to consume if the
offer is rejected. The equilibrium (optimum) price charged by the
seller initially is p, = p.

The key difference between the two equilibria is in the buyer’s
response to first-period prices between D and By; in this range,
B*(p) = p, while B(p) > p. Thus, offers between p and B, are
comparatively less attractive in the soft equilibrium, and it turns
out that the best a soft seller can do is set Do = p.

Thus, we see that the seller’s choice of whether or not to
consume leads to multiple equilibria just as the option of switching
does. In models with outside opportunities, multiple equilibria arise
because a change in a buyer’s beliefs about the seller’s toughness
can be self-confirming. That is, if starting from an equilibrium, the
buyer believes that the seller has become tougher, he himself will
become softer. This induces the seller to set a higher price today
and, if she is turned down, increases the likelihood that she will
consume the good herself tomorrow (in the model where consump-
tion by the seller is allowed). The softer the buyer, the more
pessimistic the seller’s expectations after a refusal.

In the model without outside opportunities, the seller can, for
some beliefs, be indifferent between charging a high price or a lower
one. This indifference does not lead to multiple equilibria because it
is not self-confirming: refusal by a softer buyer makes the seller
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softer herself, that is, induces her to charge a lower price. Thus, the
seller’s indifference turns out not to matter, as shown in our earlier
paper. The key to that proof was that, despite the freedom to
specify different choices for the seller in some subgames, the buyer’s
reservation price schedule was continuous. With outside offers the
reservation price schedule is not continuous, which is “why”’ there
can be multiple equilibria here.

VI. CONCLUSION

We have seen that a seller can credibly play a take-it-or-
leave-it strategy when bargaining with many buyers between whom
the seller can costlessly switch. Thus, with many “perfectly substi-
tutable” buyers the seller can do as well as if she could precommit
herself to a bargaining strategy. If the seller incurs a delay cost in
switching negotations to another buyer, then a take-it-or-leave-it
strategy need not be credible, and the seller may make several offers
to the same buyer before switching. In either case, the equilibrium
need not be efficient. Our result contrasts with those of Shaked-
Sutton [1984], who study bargaining with two buyers alternating
offers with one seller under complete information. (Actually, they
reverse the role of buyers and sellers.) The equilibrium in Shaked-
Sutton is efficient, as would be expected with complete information,
so that in particular switching never occurs. Our results highlight
the way this conclusion changes when information is incomplete.
We have also seen how the possibility that the seller can consume
the product herself dramatically changes the nature of the bargain-
ing game if the information is incomplete. If the seller’s consump-
tion value were known to be less than that of the buyer, then it
would not affect equilibrium play.
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