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Maximum likelihood estimation can be consistent and asymptotically normal despite serial
correlation in the residuals. The usual estimator of the asymptotic covariance of the parameter
estimator is inconsistent, but an alternative consistent estimator is derived.

It is well known that OLS can be consistent and asymptotically normal
despite serial correlation in the residuals. Although the usual estimator of the
asymptotic covariance of the parameter estimator is inconsistent there is an
alternative covariance estimator which is consistent.! The purpose of this
note is to sketch how and why these results extend to MLE.

Let y* be endogenous and z' predetermined at time ¢ with x*=()",z’). For
notational simplicity suppose {x'} is stationary. Let f(y'|z',6) be a family of
conditional density functions for y* and suppose f(y'|z',6,) is the actual
density of y* conditional on the predetermined variables z'. Notice that this
does not imply that exp TLT(0)=[]7-; f(3'|2',8o) is the joint density of the
y* (conditional, or otherwise), nor that LT(6) is the log-likelihood function for
any model. If the z* are exogenous this is true only if the y* are independent.
Define the partial MLE 67 to be the estimator that maximizes L(6). Note
that MLE under the assumption of independence is partial MLE if there is
serial correlation. We shall extend the usual consistency argument to show
that the consistency of partial MLE depends only on f( y|z, 8,) being the
actual density of y conditional on z and not on [[/=,f()*|2',0,) being a joint
density for the y'.

_ We make use of the following notation. The log-likelihood contribution is
2(0)=logf(x',0). Associated with i' are L(6)=EA(f) and its empirical
counterpart LT(6)=(1/T)Y .7—, A'(6). Subscript #s denote differentiation. Thus
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the score contributions are Aj(f). Associated with these are the
autocorrelation functions

re(6)=2{[4O)1045“(O)) + [4*(O)IL4(0)1,

R (0)=Er(0),

RI@=(1AT—K) Y. 1(0)

For pedagogical purposes we make the following assumptions:
(1) x'is stationary and strong «-mixing with exponentially declining weights
a.
(2) @ is a compact convex set.

(3) f()'|#,8o) is the true conditional density of y* given z* and is not
stochastically equivalent? to f(y'|2,6) unless =0, (global identification).

(4) 6,einterior ().
(5) A'is a twice continuously differentiable function of 6.

(6) For some §>0,

Esup|2(0)[**°<B, Esup|i(0)|*** =B, Esup|iy(6)|>**<B".
] ¢} (]
(7) Lge(6,) is non-singular® (local identification).

The mixing condition (1) requires a word of explanation. A stochastic
process x' is called strong a-mixing where « is an infinite sequence of scalars
a=(ttg,0y,...) with lim a, =0 iff any event F, defined by x!,..., x* and event
F'** defined by x***, x**¥+1  satisfy

|pr(F***, F,)— pr(F* **) pr(F,)| S .

Since in the independent case o, =0, this asserts that the distant future is
largely independent of the past. Strong mixing is a weak condition in that
most common processes such as the normal ARMA processes satisfy (1).

“Stochastic equivalence means that the two densities are almost everywhere equal. In practice,
since we do not know 6, we must check that, for all 046, f(x,0)+ f(x',8) ae.
*In practice, we must check that Lg,(6) is non-singular for all 6.
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Indeed, most processes which are observed can reasonably be argued to
satisfy this condition. An extensive discussion of conditions (1) and (6), which
can be weakened substantially, can be found in White and Domowitz (1981).

An important (and obvious) fact about mixing processes is that functions
of mixing processes depending on a fixed finite number of lagged
observations are also mixing. Thus, the fact that x' satisfies assumption (1)
implies that A(8), ri(6), etc. all satisfy (1) as well. This is very convenient in a
non-linear context.

Theorem 1. If (I)<4) and (6) hold, 07 is strong consistent.*

Proof. By the uniform strong law of large numbers of White and
Domowitz (1981)° together with assumptions (1) and (6), LT(8) almost surely
(a.s) converges uniformly to L(6). By a trivial modification of a classic
argument (3) implies I(6) has a unique maximum at 0,.° These facts imply,
via an argument due to Frydman (1980), assumption (2) and the definition of
67, that 672 6,. Q.E.D.

Turning to asymptotic normality by assumptions (2), (4), (5) and the usual
Taylor series expansion there exists a L%, such that

® IO 09=T51 AT 3 4.

Here the rows of LY, are the rows of L}, evaluated at a point (which may
depend upon the row) between 6§, and 7.7 By assumption (6) the uniform
strong law of large numbers implies each row of LL(0) converges uniformly
to the corresponding row of EAi%(6). Also by (6), 45(6) and Ag(6) are
absolutely integrable® so that

(9)  Leg(68)=E 29(0)=0[EX(6)]/06".

Thus plim LT, = Lg,(6,) and by assumption (7) plim [Liz] " = Lgs'(80)-

As in (9), since assumption (6) permits the exchange of differentiation and
integration, L(6) is twice continuously differentiable by assumption (5) and

(10)  Ly(6)=EA(0) =[EA{6)]/06.

“An alternative proof for a special class of time series models is in Kohn (1978).

SMcLeish (1975) shows how to prove the strong law for mixing processes; Hoadley (1971)
shows how to extend the strong law in the independent case to a uniform strong law; White and
Domowitz (1981) show how to combine the two proofs to get a uniform strong law for mixing
processes.

5See Wald (1949).

"The measurability of these random points is demonstrated in Lemma 3 of Jennrich (1969).

8nterchange of differentiation and expectation is discussed in Cramer (1946).
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Since by assumption (4} 8, (the unique maximizing parameter in @) is in the
interior of @, Ly(0,)=0. Thus by (10) EA5(6,)=0. This and assumptions (1)
and (6) show that (1//T)Y7, A(6,) satisfies the hypotheses of the
Rosenblatt Central Limit Theorem® for strong mixing processes so that

T
1y (W7 t; 45(60)> N(O, V),

(12) V=R0(00)+2k§1Rk(00).

From this follows:
Theorem 2. If (I)7) hold, \/T(07 —8) 2 N(0, Ly* (80) V L (8,)).

It remains to provide a consistent estimator of Lgy'(0,)V L' (6,). The
matrix Lg,'(f,) can be consistently replaced with [L%(0T)]~! for the same
reason discussed above that [L}]™! is consistent. Thus we must find a
consistent estimator for V. Define

(13) V,‘T(B)ERg(B)+2 i RjT(H), V(@) =Ry(0)+2 i RJ(B).
=1 i=1

From the mixing assumption (1) it follows that

(14 V()= lim V,(6).

exists and that the convergence is uniform in 6.

Furthermore for fixed k it follows from assumptions (1) and (6) and the
uniform strong law of large numbers that V(0)*3V,(f) uniformly.!® The
difficult question is how to choose k, both as a function of T and possibly of
the sample as well. Note that if we can find k(T) such that V,‘T(T)(O)‘LS'V(H)
uniformly then Vi, (#") will almost surely converge to V. White and
Domowitz (1981) show for a special class of distributions that, if k(T)aT"” for
0<y<3, then Vi (6) 3 V() uniformly and conjecture this result holds
more generally.!* If we are intested only in the weak consistency of V7 1,(67),

°Blum and Rosenblatt (1956) show that in the case where i4(6,) is a scalar C,Y 2 45(6,)
converges to normality for some weights C,. The Cramer-Wald device and computation of the
variance of Y 7_, Aj(6,) yields the stated result.

10gce White (1980) for the application of this estimator to provide robustness against
heteroskedasticity in OLS. MLE in discrete choice models is ordinarily inconsistent if
heteroskedasticity is present.

1n a conversation with the author.
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it is straightforward to show 0 <y <3 works in general. By Amemiya’s Lemma
and Chebychev’s Inequality is suffices to show that

E|Vin(©6) = Vi (6)? >0 uniformly in 6.

However, VI () is the sum of the RJ(6); by McLeish’s (1975) covariance
bound and assumption (6),

E|RT(0)—R;(0)*SCT'AT—T") for a fixed constant C.
Thué regardless of how highly correlated the RT are,
(15)  E|[Viay(®) — Ve (O SCT(T—T?)-0.

As a practical matter knowledge of the rate at which k should be increased
with sample size isn’t very helpful in dealing with a sample of fixed size. The
issues in choosing k are these: if k is too large then the estimates RT for j
near k will not be very reliable as they are based on only T —j observations.
On the other hand, if k is too small ¥, is not going to approximate V very
well since 2% %, 1 R; is omitted. Indeed the error in estimating Vis at least
2Y % ,R;, which among other things is unobservable. A crude rule of thumb
is this: under the mixing assumption (1) |R;| must decline exponentially.'?
Choose k so that there are ‘reasonably’ many observations with which to
estimate R,. Then use the estimated |RZ|,|RT|,...,|R{| to find an
exponentially declining upper bound: this can be extrapolated to give some
idea of how large the error 2Y %, ,|R;| might be. I should note that the
problem of choosing k correctly is a fundamental problem with asymptotic
theory: how large is large? Ultimately only finite sample theory can answer
this question.

128ee McLeish (1975).
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