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THE SENSITIVITY OF MLE TO MEASUREMENT ERROR*
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The paper explains how to compute a simple summary measure of the sensitivity of maximum
likelihood and related non-linear estimates to measurement error in exogenous variables. The
proposed measure is a first-order approximation, and its implications for probit and censorship
type models are shown to be quite different from ordinary least squares.

1. Introduction

In empirical studies the replacement of theoretical variables with proxies can
result in measurement error. Frequently, models are estimated under the
assumption of no measurement error in the hope that the resulting errors in
inference will be small. It is also important to report how sensitive the
estimator is to measurement error — how large is the asymptotic bias under
different assumptions about the magnitude of the error and in what direction is
the estimator biased?

A useful summary measure that answers both of these questions is the
derivative of the asymptotic bias with respect to the variance of the measure-
ment error, evaluated at zero variance. Section 2 of this paper discusses how
this derivative can be computed, and why this approach is more tractible than
attempting to re-estimate the model explicitly allowing for measurement error.
Section 3 specializes to location /scale parameter models, and points out that
in models such as probit and normal censorship, unlike the normal linear
model, the coefficient of a variable measured with error may not be biased
down in absolute value. Section 4 analyzes the quality of the approximate
correction for bias in a one-variable regression model.

2. A sensitivity measure

Suppose that the probability density of an endogenous variable y condi-
tional on a parameter vector @, an exogenous variable x* and other exogenous
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variables z is

(318, x*, 2). (1)
The log-likelihood function is defined as
L(8,x*)=1logf( |6, x*,z), (2)

where for notational simplicity y and z are suppressed.

In practice x* is often not observed but is replaced with a proxy x =
x* 4+ YA n, where 7 is a random measurement error independent of y, x* and
z with zero mean En =0 and variance normalized to equal that of x so that
var(n) = var(x) = o?2. Thus A is the fraction of the variance of x attributable to
measurement error. All random variables are sampled independently from a
stationary distribution. The process generating the observable x is taken to be
fixed, as is the process generating n. However, the process generating the
unobservable x* necessarily depends on A; in particular var(x*)= (1 —A)o2.
Naturally, when A =0, x* almost surely equals x.

Throughout this paper I shall use a number of regularity assumptions. These
hold for all 0 <A <1 and all 4 in a compact convex parameter space:

(A.1) L and its derivatives to third order with respect to § and x* are
absolutely integrable.

(A.2) L and its derivatives to third order have bounded absolute moments of
some order strictly greater than two.

(A.3) For each X there is a unique #(A) strictly interior to the parameter space
which maximizes EL(6, x*).

(A.4) I= —ELy(8(N), x*) is non-singular.

(A.5) Ejn|® is finite.

Throughout the paper subscripts denote differentiation. Assumption (A.1)
guarantees the differentiation and integration can be exchanged when required.
Assumption (A.2) guarantees that sample moments almost surely converge
uniformly to expectations (and that they are asvmptotically normal, although
this is not used). Assumption (A.3) is a global identification condition, while
(A.4) is a local identification requirement.

If x* is observed and A is known, we can form the maximum likelihood
estimate 8V* which maximizes L"*(8)=(1/N)L"_ L(6, x"*). The moment
assumption (A.2) guarantees that L"*(8) almost surely converges uniformly to
EL(8, x*) and thus that #¥* almost surely converges to #(A). Furthermore the
global identification assumption (A.3) guarantees that #(A) is the ‘true’
parameter vector that generated the data. This is well known and proofs can be
found (for example) in Wald (1949) or Frydman (1980).



D. Levine, Sensitivity of MLE to measurement error 225

If we replace the true variable x* with the proxy x, we can form
the quasi-maximum likelihood estimate 6" which maximizes L"(#)=
(1/N )ZQ’=1L(0,x"). By an analogous argument to the one above, which is
detailed in White (1982), 8" almost surely converges to 6(0). Unfortunately we
are interested in drawing inferences about §(A) and, for A # 0, 8(A) # 6(0) in
general. This is the classical errors-in-variables problem.

There are a variety of approaches to this problem. Theil (1957) gives a very
general analysis of specification error in the normal linear model. If additional
proxies are available instrumental variables is a possibility. Alternatively we
may try to bound #(A) as Reiersol (1950) suggests, although this appears
impractical in a non-linear setting. With specific assumptions about the form
of the distributions of x* and 7, Madansky (1959) has shown that A may
actually be identifiable. In this case the model may be estimated by maximizing
either the likelihood conditional on x or the unconditional joint likelihood.
Since x is not weakly exogenous, Engle, Hendry and Richard (1983) show that
the latter procedure is better. Unfortunately we typically have little confidence
in the assumptions about x* and 7 required to identify the model, and in any
case the computational difficulty involved is great.

If the proxy is very bad (A is large) it is unlikely that any procedure will
yield very reliable inferences about 8(X) in a finite sample. Typically, however,
we use a proxy because a priori we think A is small. In this case it makes sense
to think that 6(0) will be close to #(A) and quasi-maximum likelihood
estimation is used. A useful supplement to this is sensitivity analysis — how
much and how does (\) change when A is perturbed slightly from zero? This
paper provides that analysis.

For small A we have

8(X) = 6(0) +A6,(0), (3)

where 6, is the derivative of # with respect to A. Thus #,(0) can be used as a
correction factor to approximately correct the estimates derived by replacing
x* with x. This quantity has the advantage that it is easy to compute (and
estimate in finite samples) and is easily interpreted by the consumer of
empirical work. It is also (as we are about to show) independent of the process
generating x*. This approach is very similar to that taken by Keifer and Skoog
(1982) in analyzing omitted variables in non-linear models, and Yatchew and
Griliches (1979) in analyzing probit models.

The differentiability assumption (A.1) implies that #(X) satisfies the normal
equations

EL,(8(\), x*)=0.
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Thus by the implicit function theorem

O e

_1 9EL,(6(0), x*)

=1 A

4

A=0

Note that as A changes so does the distribution of x*. To compute dEL,/dA,
observe that since x = x* + YA,

EL,(6(0), x* +VAn)=0, (5)

independent of the value of A. Thus if we differentiate (5) with respect to A at
A =0, we find

JEL,(6(0),x*)| _ JELy(6(0), x°+ vAn) ©)
E)N N E)N ’

A=0

provided the right-hand side exists. Here x° is a random variable independent
of m which is drawn from the x* distribution (or more accurately the joint
distribution of x* and z) when A = 0. In other words, on the left-hand side we
let the distribution of x* vary with A and hold the weight on 7 fixed at zero;
on the right-hand side we hold the distribution of x* fixed at A = 0 and allow
the weight on 5 to vary. To evaluate the right side of (6) we use a Taylor series
expansion to find for an appropriate choice of the matrix L,

J

b—xELa(ﬁ(O),x°+ VA7) (7)
(A) = B{Ly(6(0).x°)
(B) + Ly, (8(0), x°)VAn
(©) + Ly, (6(0), x°)(A/2)7*
(D) + Loox(N2/6) )
(B)  =1EL,,(6(0),x°)?.

Line (A) vanishes by assumption (A.3), line (B) by Ey = 0, line (C) and (E) are
the same since En? = 0?2, and line (D) vanishes sinces A*/?/A = A/? vanishes at
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A = 0 while L, remains bounded by Taylor’s theorem. Thus since x° and x
are almost surely the same, we have computed

8,(0) = — 317 'EL,,,(8(0). x)o;. (8)

Since by (A.2) the sample moments for I and L, converge uniformly
in probability to-the true moments, it follows from Amemiya’s lemma and
plim 8" = 6(0) that if 62 is consistent for o? then the estimator

N N
Z L,,a(ﬂ",x") ! Z Loxx(aN,X")
n=1

n=1

1
2 N N

oy =

EhY

)

is consistent for 8,(0).

It should be noted that the preceding derivation applies not only to MLE,
but to any estimator defined by equating sample moments of functions of the
data and parameters to zero: non-linear least squares, NL2SLS and NL3SLS
all have this form.

3. Location /scale parameter models

Now consider the special case of a location /scale parameter model in which
the log-likelihood function is

L(B,0,Z)= —loge— H(ZB/o). (10)

Here 6=(B,0) where B is a k-vector of slope coefficients, ¢ is a scale
parameter, and Z is k-dimensional row vector of exogenous variables. The first
variable Z' is presumed to be measured with error. The normal linear model,
probit, logit and the censored normal linear model all have likelihood functions
of this form.

Define weights
=0 EH"(ZB/0)/0?,
Wi=oXB'EZ/H"(ZB/0)/26°,  j=1,....k, (11)
Wkt = —axz,Bl{EZBH'”(Z,B/o) + 203W0}/204.

Let o;; be the asymptotic standard errors of maximum likelihood without
measurement error: the entries in the matrix — I~ *. Algebraic manipulation of
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(8) then shows that the correction factor for 8’ is

K
Bi=B"\WO%,+ Y Wio,+ Wrtle, , 1. (12)
j=1

The first term in (12) [3'W %;,] should be thought of as the ‘normal’ effect.
In the normal linear model W/ =0 for j=1,...,k and o, ., =0, so only this
term matters. Also, W°%=02/02, so B! is biased down in absolute value, and
other coefficients are biased up or down depending on their (asymptotic)
correlation with 8. In non-normal models with a constant term W ° > 0 is part
of the second-order conditions for a maximum, so the first term again tends to
bias B! down to absolute value.

The second term in (12) [Zf=1,Bleoi ;1 should be thought of as the ‘non-
linear’ effect. In the normal linear model, the normal equations for 82,..., 8*
are linear in Z! and are thus unaffected by measurement error which operates
through the second derivative (L,, ) of the normal equations with respect to
the proxy. In non-normal cases, the normal equations are non-linear in Z! and
thus are affected by measurement error. The second term measures the
consequences of this effect.

The third term in (12) [8'W**'s; , ] should be thought of as the scale
effect. Measurement error significantly biases estimation of the scale parameter
¢ since random variation in the endogenous variable is confounded with
measurement error. In the normal model, block diagonality insures that
6, .1 =0 — that failure to estimate ¢ correctly doesn’t affect estimates of the
slope parameters. Otherwise, when g, , ., # 0, the error in estimating ¢ feeds
back to bias the slope parameters. In censorship models estimates of slope
parameters hinge critically on the estimated scale parameter and the third term
is a potentially serious source of error.

In OLS the coefficient of the proxy is biased down in absolute value as are
positively correlated coefficients with the same sign; in general, the direction
the estimate must be adjusted is the sign of the coefficient of the proxy times
the sign of the correlation with the proxy. This result, on which so much of our
intuition is based, is wrong in non-normal models. As shown, there are two
additional effects — the non-linear effect and the scale effect — which must be
consi lered to sign the bias due to measurement error.

4. Simple regression

The adjustment factor 8,(0) in (8) and (12) enables an approximate adjust-
ment to the estimator §(0) derived by replacing x* with x in the likelihood
function. How good is this approximation? In the case of one variable
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regression, an exact correction can be computed to compare with the ap-
proximation.

Suppose that the endogenous variable is generated by

y=0(A)x*+e¢, (13)

where & ~ N(0,6?) and x* ~ N(0,(1 — A)o?2). The estimator derived by doing
OLS using x = x* + yA g in place of x* is

6(0) = Exy/Ex>. (14)
8(X\)
8(0)
actual error ratio
Sy _ 1
6(0)  1-A
approximate error ratio
8(A) _
5(0) 1+ A
1.50
1.33/
1.00
A
0.33 1.00

Fig. 1. Approximation error in simple regression.
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A direct computation shows that

8(A)=0(0)[1-A]"", (15)

while the approximate value 8%(A) computed as 89(A)=8(0)+A8,(0) is
computed from (12) as

8°(A) =0(0)[1 +A]. (16)

Naturally (16) is simply the tangent line to (15) at A = 0. As sketched in fig. 1,
the quality of the approximation depends on A — the fraction of the variance
of x accounted for by measurement error. If the variance of x is almost
entirely due to measurement error, the approximation is quite bad. However,
even with a third of the variance of x due to measurement error, the
approximation eliminates two-thirds of the bias.
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