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In a pure exchange overlapping-generations model with many goods, but a
single consumer with preferences separable between two periods of life, there are
(generically) finitely many equilibria in which money has no value. If money has
value, then (generically) there is at most one dimension of indeterminacy. This
property does not generalize to a model with many consumers and general
preferences. It is shown why a separable representative consumer implies such
strong conclusions. It is also shown that the absence of income effects leads to
similar results. Journal of Economic Literature Classification Numbers: 021, 023,
111. © 1984 Academic Press, Inc.

1. INTRODUCTION

Gale [4] has shown that in a pure exchange overlapping-generations
economy with two-period lived consumers and a single consumption good
there are generically a finite number of perfect foresight equilibria along
which money has no value. If money has value, then there is (generically) at
most one dimension of indeterminacy, which can be indexed by the price of
money relative to that of the consumption good. We refer to this as the one-
good result. In recent years a number of extensions of the one-good result
have been put forth. Balasko and Shell [1] have argued that the result holds
if there are many goods in each of the two periods, but a single represen-
tative consumer with Cobb-Douglas preferences in each generation. Brown
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and Geanakopolos [2], using non-standard analysis, and Geanakopolos and
Polemarchakis [5] have demonstrated that a single consumer with
preferences separable between the two periods of his life leads to the same
result, at least in the case where money is useless.

The extent to which these results further generalize has been explored by
Kehoe and Levine [8], who report a robust example with a single
consumption good and a representative individual with additively separable
(CES) preferences who lives for three periods yet exhibits indeterminacy
when money has no value, and more than one dimension of indeterminacy
when it does. We are led in this paper to ask what special features of
separable preferences in the two-period case lead to the one-good result.

Kehoe and Levine [7] have outlined a general approach for analyzing the
determinacy of equilibria locally near a steady state of a generic economy.
Unfortunately, economies with a single separable consumer are degenerate
because the matrix of derivatives of young people’s excess demand with
respect to prices when they are old is singular. In this paper we extend the
previous analysis to cover this case and show that the one-good result holds
locally near the steady state of a stationary economy in which two-period
lived consumers are “almost” identical and have “almost” separable
preferences. Thus, although the Kehoe and Levine [7] paper has shown that
there are open sets of economies with any degree of indeterminacy no greater
than number of goods, this paper shows why the work of Balasko, Shell,
Brown, Geanakopolos, and Polemarchakis has identified an open set of
economies in which the one-good result holds.

Unfortunately, separability combined with a representative consumer is
not plausible when combined with only two periods of life. Typically we
would expect at any moment of time many quite dissimilar individuals due
simply to differences in age. A possibly more palatable assumption that leads
to results similar to the one-good result is that there are no large income
effects. We discuss this in the concluding section.

2. THE OVERLAPPING-GENERATIONS MODEL

Each generation ¢> 1 is identical and lives in periods ¢ and ¢ + 1. There
are n goods in each period. The consumption and savings decisions of the
(possibly many different types of) consumers in generation ¢ are aggregated
into excess demand functions y(p,, p,,,) when young and z(py, Pyyq) When
old. The vector p, = (p, ,..., p*) denotes prices in period *. Intertemporal trade
is possible, so the aggregate budget constraint (Walras’s law) has the form
Pt Y(PysPyy1) + Pl 2(Pps 1) =0. In  addition, excess demand is
homogeneous of degree zero in prices (p,,p, +1)- We also assume excess
demand is continuously differentiable, which, as Debreu [3] and Mas-Colell
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[10] have shown, entails little loss of generality. An equilibrium price path
for this economy is one in which excess demand vanishes in each period:
2(Py_> o) + ¥(Pi>Pisy) =0 for 1> 1 and zo(p1) + Y(Py» P2) =0 for t=1,
where z, is the excess demand of old consumers in period one. There are two
types of equilibria in the economy. To distinguish between them we set
u=p,zo(py)- Iterated application of the equilibrium condition and Walras’s
law shows that —p} (P> Pi+1y) =pi 1 2(Pys Pryr) =4 at all times. Thus u is
the fixed nominal savings of young people in each period or, equivalently,
the fixed stock of fiat money (at least if u>0). If u=0, we call this a real
path; if 4 # 0, we call it a nominal path. A steady state of the economy is a
relative price vector p and inflation factor y such that p,= y'p is an
equilibrium of the economy. The steady state rate of interest is 1/y— L

In the remainder of this section we summarize some general results from
Kehoe and Levine [7]. If a steady state is nominal, then Walras’s law and
the equilibrium condition imply that y=1. Conversely, if a steady state is
real, then generically y# 1. We focus on the behavior of paths near a steady
state. In particular, we ask how many equilibrium paths converge to the
steady state. The stable manifold theorem from the theory of dynamical
systems described in Irwin [6] implies that generically this question can be
answered by linearizing the equilibrium conditions. Making use of the fact
that derivatives of excess demand are homogeneous of degree minus one, we
can write the linearized system near a steady state (p, 7) as

Dlypt+l+(Dly+yDZZ)pt+yDlzpt—l=Os t>1 (1)
Dzypz+(D1Y+D20)P1=Dzop"zo"y ()

where D, y is, for example, the matrix of partial derivatives of y with respect
to its first vector of arguments and where all functions and their derivatives
are evaluated at (p, yp)-

In the generic case D,y is non-singular, and (1) can be solved to yield a
second order difference equation. Define the characteristic matrix R(¢) by
the rule

R(¢)=D2J’¢2+(D1J’+YD22)¢+7D12- 3

The characteristic values of the system are the roots of the equation
det R(¢;) = O, and, if the vectors f; satisfy R($,)/i=0 and f; # 0, the charac-
teristic vectors of the system are (f;, #.f))- Homogeneity implies that ¢ = is
a root of R with R(y)p=0 where p is the steady state vector of relative
prices. Generically, this is the only root on the circle of radius y in the
complex plane. '
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We consider a nominal steady state with u#0 and y=1 first. In
equilibrium p{ y(p,, p,) = —u, which can be linearized at the steady state as

p'Dyyp,+(y' +p'D,y)p,=—u. 4)

This defines a 2n — 1 dimensional subspace of the initial conditions (p,, p,),
which is invariant since u is constant on paths. It contains all 27 — 1 charac-
teristic vectors of the system except the vector (p, p) that corresponds to the
root y=1. Let n° be the number of roots inside the unit circle. The
corresponding n° dimensional subspace spanned by characteristic vectors is
the space of initial conditions (p,, p,) that yield paths that converge to the
steady state. Condition (2) defines an n dimensional subspace of the 2n — 1
dimensional space of vectors that satisfy (4). The intersection of the two
spaces generically has dimension n*+n—(2n—1)=n*—n+1. Thus,
generically, there is an n°* — n + 1 dimensional set of equilibria. If n* < n — 1,
the set is empty; if n°* =n — 1, the equilibrium is unique. Notice, however,
that in the nonlinear system this implies only that there is a unique
equilibrium in a sufficiently small neighborhood of the steady state—no
implication of global uniqueness follows.

At real steady states the price level is indeterminate, so we work with
prices in a 2n — 1 dimensional space of normalized prices, throwing out the
characteristic value y associated with characteristic vector (p, yp). It can be
shown that the condition for stability in this lower dimensional system is that
characteristic values be less than y is modulus. Since we consider only initial
conditions with 4 =0, condition (4) further reduces the dimension of the
system to 2n — 2. It can be shown using Walras’s law that the eigenvalue
thrown out in this reduction is equal to 1 and that this root governs the
behavior of paths with nominal initial conditions near a real steady state: If
y > 1, then asymptotically money does not matter; if y < 1, then initial
conditions with valued money cannot yield equilibrium price paths that
approach the steady state. Let the number of remaining eigenvalues that lie
inside the circle of radius y be 7°. The initial condition (2) defines an n — 1
dimensional space and thus the dimension of equilibria that converge to the
real steady state is i+ (n—1)— (2n—2)=Aa"—n+ 1.

3. IMPLICATIONS OF A SINGLE SEPARABLE CONSUMER

Kehoe and Levine [9] prove that there are robust examples of economies
with any value of 0 < n*<2n—1 and 0 < #°* < 2n— 2. A case of particular
interest is when the characteristic values split, that is, n — 1 lie inside, and
n — 1 outside, the circle of radius y. In this case 7° = n — 1, which implies
that real paths are locally unique, and n— 1 < n° < n, which implies that
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nominal paths are either locally unique or have a single dimension of indeter-
minacy. Thus the one-good result holds locally near steady states if and only
if the system splits. In the extreme case where n — 1 values lie outside the
circle of radius y and n — 1 values are exactly equal to zero, we say that the
system splits exactly. In this case n— 1 prices are thrown out as unstable
and n — 1 jump directly to their steady state value. The dynamical system
really only involves two prices: one price for future consumption and one for
current consumption. Thus, a system that splits exactly exhibits the same
dynamic behavior as a model with one good in each period. In the real case
we get to throw out one of these prices as corresponding to paths with valued
fiat money, and we see that the system jumps directly to the steady state. In
the nominal case there is one eigenvalue that is not determined. If it lies
inside the unit circle, there is one dimension of indeterminacy, but it is
always possible to jump right to the steady state. If it lies outside the unit
circle, there is a uniquely determined path going to, but not generally equal
to, the steady state.

The results of Balasko, Shell, Brown, Geanakopolos and Polemarchakis in
our local context should imply that if there is a single separable consumer in
each generation the system splits. Suppose the representative consumer has
utility u(y, z) for net trades. The consumer maximizes u(y, z) subject to the
budget constraint p; y + p;,,z = 0. Assuming that the utility function has all
the necessary properties, we can characterize the solution to this problem by
the usual first order conditions:

Dyu—Aip;=0 %)
Dyu—Ap;,, =0
piy+pi,z2=0

for some A > 0. Using the implicit function theorem, we can compute the
partial derivatives of y and z by differentiating (5). For example, after some
tedious algebra we find that

1 i
oy it (ot (4 Let) s 1n)  ®
where
A=(D§2u—D§,qulu"szu)_' @)

D} u Dlu ™'y p,
D}u D%qu lpH-lJ
¢=p,,—D3up,
d=2AAc+ z(p,, p; ;1)

b= (0! pls] [
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With one consumer with separable preferences, utility depends only on an A
index of consumption each period, so u(y, z) =v(h(y), g(z)) and thus a n
Wh
D%,u=D%vDhDg' (8) T
Furthermore, at the optimum, Dh = Ap, and Dg’ = Ap;, ,. Therefore T
Dhu=A* D},vp,piyy- 9) zer
. . vec
Using (6), we see that line
-1 2 2 ’ 1 ’ 1 7
D,y=-Dyu"'p, (A’ D0 pjs A \M —4-cd' ) +5-d (10) : an:
has rank one, and similarly for D,z. We summarize our arguments with the sol.
following theorem. }
2
THEOREM 1. Intertemporally separable utility implies that both D,y and the
D,z have at most rank one. (1)
Now we examine the dynamics when D,y and D,z have rank one. To do
so we use three regularity assumptions, each assumed to hold at all steady
states. Using the topology and methods of Kehoe and Levine [9], we can anc
show that these assumptions are generic in the space of economies having ’
one consumer with separable preferences. Here we merely indicate why they ind
are not particularly restrictive. (R.
. R
(R.1) D,y +yD,z and D,z are non-singular. in
the
In fact D,y and D,z are each the sum of a negative definite substitution
matrix and a rank one income effects matrix. Since neither y nor z 18
generally homogeneous in a subset of prices, neither D, y, nor D,z, nor their
sum is generally singular.
- Si
(R.2) D,y(Dyy+7yD,z)"' D,y #0. qﬂ
Recall that D, y has proportional rows and proportional columns. COH.SC'
quently (R.2) says that a column of D,y under the linear mal?Plng
(D,y +7yD,z)~" should not be orthogonal to a row of D,y. There 1§ no
economic reason why it should be. Si;
S
(R.3) There exists ¢,, not equal to either O or y, VL}

with det R(g,) = 0.
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222 KEHOE AND LEVINE

At a real steady state generically y # 1 and R(1) =0, so ¢, = 1 will do. At
a nominal steady state we are asserting the existence of one free eigenvalue.
When n = 1, for example, we require that the two roots of R not both be 1.
The key technical result characterizes R(¢) under (R.1)}-(R.3).

THEOREM 2. Under (R.1)-(R.3) if D,y and D,z have rank one then

(a) det R(¢) is a polynomial of degree n + 1 with n— 1 roots equal to
zero and the remaining roots ¢, =y and ¢, given in (R.3). There are n + 1
vectors f; such that R(¢,)f;=0 (where ¢, =0 for i >2) and (f;,9,f;) are
linearly independent.

(b) The linearized equilibrium condition (1) can be solved for p, ., if
and only if (p,_1>P,) € {(fi» 9:/})) (where { ) means the space spanned by).

©) If (Pe—1>P,) € {(f;s 8:17)) then there is a unique value of p'*" that
solves (1) and satisfies (p;, Py41) € (S 0:S)-

Proof. Observe first that if (¢;,/;) satisfies R(¢,)f; =0 and if (p,_,,p,) =
Y afi, ¢:./) then (PesPivr) = i ai(@:fi» 81 1) solves (1). Thus, if Q, is
the linear space of (p,_,,p,) that satisfies (1), then ((/f;,¢,f;)) = @, . Since
(1) can be rewritten as

pt=(D1y+yDZZ)_l(DZypt+l+Dlzpt—l) (11)

and since D, y{p,, ) is one dimensional, it follows that dim(Q,)=n + 1.

To establish (b) we need only establish the existence of n + 1 linearly
independent solutions (f;, ¢,/;). Obviously ¢, =y and f, =p; @, is given by
(R.3) and f; is any non-zero vector in the null space of R(¢,). Finally,
R(0) = D, z has rank one, so there are n — 1 independent vectors SaseosSust
in its null space. This gives us n+ 1 vectors. If they are dependent, then
there are non-zero weights a,,..., &, such that

> af;i=0
i=1 (12)
a0,/ +a,9,/,=0.

Since ¢, # 0, the second equation implies a,f, = —a,(¢,/¢,)./f; and, conse-
quently, the first equation becomes

n+1

e fi(l—9,/8)+ 3. @ f;=0. (13)
i=3
Since ¢, # ¢, by (R.3), this means f, is in the null space of D,z; or, since
j'. =p. that D,zp=0. By homogeneity D,zp+yD,zp=0, so D,zp=0,
which contradicts D,z being non-singular by (R.1). This establishes (b).
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Next we establish (c). Let (p,_,,p,) € Q.. Part (b) of Theorem 2 implies
that (p,_,,P,) = 21 a(f;» ¢.f) for unique weights a,. Since R(¢,)f;=0,
Pis1=2i091f; solves (1) and, since (PpPei1) =2 @i, 9.S)
(P> Pr+1) € Q.- Therefore, a solution in Q, exists. Since D, y has rank one,
any other p,,, that solves (1) must have the form p,.,=p,., +n where
D,yn=0. If (p;,prs1+n)EQ, then (0,n)EQ, since (P,Pr11)E Qs
already. Condition (1) implies that there is a vector x such that D,y x=
(D,y + 7y D,z)n. Consequently, (R.1) and D,y n= 0 imply that

D,y(D,y+yDyz) ' D,yx=0 (14)

and, if #+ 0, D,y x# 0. Since D,y has rank one this implies D, y(D,y +
yD,z)~' D,y =0, which contradicts (R.2). Therefore n =0, and p,, is the
unique solution in @, . Notice that if we use (f;, ¢.f;) as a basis for Q, then
q,,1 = diag(¢,) g, so the linearized system satisfies the one-good resuit.

Finally, we prove (a). Clearly 0 is a root of det R(@); we first show that its
algebraic multiplicity is at least n — 1. To do so let f, , , be any vector not in
the null space of D, z. Define the matrix 4 to have columns f,...,[, 425 that
is, the null vectors of D,z plus one other independent vector. Since A has
independent columns it is non-singular and det R(¢) =0 if and only if
det R(¢)4 = 0. Writing this out, we see that

det R($)d = det(D, y A + (D, y + 7 D,2) 44 +C) (15)

where the first 7 — 1 columns of C are zero and the last is D,z f, .- But
then each of the first n — 1 columns of R(¢)4 contains a factor of ¢ implying
det R(¢)4 = ¢" ' det C where C has the first n— 1 columns of D,y 4¢ +
(D,y +yD,z)A4 and the last column of R(¢)4. So det € is a polynomial in
(positive powers of) ¢ and the algebraic multiplicity of the zero root is at
least n — 1.

On the one hand, since det R(¢) also has two distinct non-zero roots ¢,
and ¢,, it has degree at least n+ 1. On the other hand, we consider the
backward characteristic matrix B(8)=B*R(6~'), which corresponds to
running the system backward in time. Since D,y has rank one, this implies
det B(B) has at least n — 1 zero roots. Factoring the forward and backward
polynomials we see that each zero root of the backward polynomial reduces
the degree of the forward polynomial by one and, therefore, that det R(¢) has
at most degree n + 1. Consequently, det R(¢) must have degree exactly equal
to n + 1 and exactly n — 1 zero roots. Q.E.D.

Roughly what Theorem 2 says is that in a one consumer separable
economy the “eigenvalues” split exactly in the sense that n — 1 are zero and
the n — 1 zero roots of the backward characteristic polynomial are infinite
roots of the forward polynomial and thus are definitely outside the unit
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circle. The following result is an immediate implication for approximately
separable economies.

THEOREM 3. If a sequence of economies k = 1, 2,... having no zero roots
and D, y* non-singular at a steady state converges to an economy with a
single separable consumer which satisfies (R.1)~(R.3), in the sense that the
steady state prices and demand derivatives there converge, then for large
enough k the system splits and satisfies the one-good result locally.

Proof. We consider the forward and backward polynomial det R*(¢) and
det B¥(8). By assumption these converge to R(¢) and B(B) and, since
R(¢)#0 and B(f)#£0, it can be shown by factorization that the roots
converge as well. But then n— 1 roots of R*(¢) go to zero, and, since the
roots of R*(¢) are the inverses of roots of B*(¢), the n — 1 roots of B¥(¢)
going to zero imply the corresponding n—1 roots of R*(¢) approach
infinity. Consequently, for large enough k, the system splits and, by Kehoe
and Levine [7], the one-good result holds. Q.E.D.

Using the topology and methods from Kehoe and Levine [9], we can show
that there is an open set of non-degenerate economies (D,y non-singular)
around the set of degenerate separable economies in which the one-good
result holds.

The final step of our argument is to show that the one-good resuit actually
holds for separable economies, and not just their linearized versions.

THEOREM 4. If (R.1)-(R.3) hold and if D,y and D,z both have rank
one in an open neighborhood of the steady state then the one-good result
holds locally.

Proof. Since D, y has rank one in a neighborhood of the steady state, the
null space of D, y is the tangent space to the n — 1 dimensional manifold of
values of p,,, on which the first coordinate function y'(p,, -) is constant. By
integration y(p,, p,, ) depends on p,,, only through y', that is, y(p,, p,,,) =
7(p,»¥'(p,s P,4 1)), Where 7 is smooth. The equilibrium condition is

z(p,_,,p,)+)7(p,,y‘)=0. (16)

Assumption (R.1) implies that D,y + y D,z is non-singular and thus, for
fixed y', the set of gq,= (p,_,,p,) that satisfies (16) is an n-manifold. Also
that D, y is non-zero implies that as y' varies, g, lies in an # + 1 manifold Q
(compare (11)). Q, is obviously the tangent space to Q at the steady state.
We need to show that the equilibrium condition induces a unique mapping
from Q to itself. It would then follow that the linearization on Q is given by
part (c) of Theorem 2, which is non-degenerate, and the methods of Kehoe
and Levine [9] imply the desired result.
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The equilibrium conditions implicitly define a first order correspondence
of O by z(q,)+ 74}, 4?,,)=0 and g;,,=q; Where q,= (q},q;)- Given
q,€Q, z(q,) + 7(g;,»')=0 has a solution $'(g,) that is locally a smooth
function by the implicit function theorem. Consequently, the equilibrium
conditions may be written as y'(q%, 9%, ) =r'(q,) and g!,,=q;, which,
since D,y' is not zero, yields an n— 1 manifold of solutions for g,
denoted O(g,) for each g,. Note that the tangent space to O(q,) at the steady
state value of ¢, = g = (p, yp) is just the null space of D, y.

To solve for g,, , not only must g, , be an element of O(g,), but it must be
in Q as well. Consequently, we need to show that 0N 0(q,) is a singleton.
Since Q is n+ 1 dimensional and O(q,) is n— 1 dimensional, this is true
locally if the manifolds are transverse, and they are transverse locally if they
are transverse at the steady state g, = g. Therefore, we need the tangent space
to Q, which is Q;, and to O(p, yp), which is the null space of D,y, to
intersect in a single point. This is of course the point of part (c) of Theorem
2. Q.E.D.

Let us also observe that if there are n—k, n> k > 0 consumers with
separable preferences, then D,y and D,z have rank k and purely notational
changes in the argument above establish that there are at most k dimensions
of indeterminacy in the nominal case and k — 1 in the real case.

4. IMPLICATIONS OF SMALL INCOME EFFECTS

In the complete absence of income effects the matrix of demand
derivatives is symmetric so that (D,y+yD,z)= (D,y+y D,z) and
D,z=D,y'. Let R(¢) be the characteristic matrix defined in (3) and let
B(B) =B*R(B™") be the backward matrix defined in the proof of Theorem 2.
Then from (3) and the assumption of symmetry it follows that

R'($)=B(7'¢)- (17)

Since R and R’ have the same roots and B has the inverse roots, we
conclude that, if ¢ is a root of det R(¢) = 0, then so is y¢ . Since |¢| < Vv if
and only if |y¢~'| > /7, this implies in the generic case, where no eigenvalue
(except the unit root when y = 1) exactly equals \/7, that half the eigenvalues
are outside the circle of radius /¥ and half inside the circle of radius V-
We refer to this as pseudo-splitting.

Splitting is around the circle of radius y and pseudo-splitting is around the
circle of radius \/y. At a nominal steady state when y = 1 pseudo-splitting
and splitting are the same; at a real steady state with y near one we would
“generally” expect that the two are the same. In addition when y < 1 pseudo-
splitting implies that at least half the roots are outside the circle of radius y
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and thus that there can be no indeterminacy; when y > 1 there can be no
instability.

Finally, the continuity of the eigenvalues implies that, if the derivative
matrix is approximately symmetric (income effects are “small”), then the
implications of pseudo-splitting continue to hold. Thus, the implications of
small income effects are similar to the implications of the one-good case. In
particular, when y < 1 no indeterminacy is possible and when y =1 at most
" one dimension is possible. Recall that in the model studied by Gale [4] the
unique real steady state is autarchic and, when y < 1, determinate. Since
income effects always vanish at prices that give rise to autarchy, our result
can be viewed as a generalization of Gale’s. There is, however, no general
reason to suppose that with more than one good in a period, more than one
consumer in a generation, or more than two periods in a lifetime that a real

steady state should be autarchic.

REFERENCES

1. Y. BaLasko AND K. SHELL, The overlapping generations model. III. The case of log-
linear utility functions, J. Econom. Theory 24 (1981), 143-152.

2. D. J. BRowN AND J. GEANAKOPOLOS, “Understanding overlapping generations economies

as lack of a market at infinity,” presented at the National Bureau of Economic Research

Conference on General Equilibrium Theory, Northwestern University, March 1982.

G. DEBREU, Smooth preferences, Econometrica 40 (1972), 603-612.

4. D. GALE, Pure exchange equilibria of dynamic economic models, J. Econom. Theory 6
(1973), 12-36.

5. J. D. GEANAKOPLOS AND H. M. POLEMARCHAKIS, Intertemporally separable, overlapping-
generations economies, J. Econom. Theory 34 (1984), 207-215.

6. M. C. IRwIN, “Smooth Dynamical Systems,” Academic Press, New York/London, 1980.

7. T. J. KEHOE aND D. K. LEVINE, “Comparative statics and perfect foresight in infinite
horizon economies,” Forthcoming, Econometrica, 1985.

8. T. J. KEHOE anND D. K. LEVINE, “Indeterminacy of relative prices in an overlapping
generations model,” MIT Working Paper No. 313, 1982.

9. T. J. KEHOE AND D. K. LEVINE, “Regularity in overlapping generations exchange
economies,” Forthcoming, J. Math. Econom., 1984.

10. A. Mas-CoLeLL, Continuous and smooth consumers: approximation theorems, J.
Econom. Theory 8 (1974), 305-336.

w

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium




