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Abstract
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this for some time, the length of their memory plays a key role: With short memories,
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play comes close to Nash equilibrium. However, unlike in the model where social
information is solely about how well other agents are doing, mixed equilibria can be
favored over pure ones.
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1 Introduction

In this paper, we develop and compare two models of learning in which agents, who have
access to social information and have limited memory, decide when to adjust their strategies
based on social comparisons. We consider large populations of agents who play the same
game repeatedly but are “strategically myopic,” meaning that they do not attempt to in-
fluence how their current opponents will play in the future. We characterize conditions on
social information and memory under which the learning procedures lead to Nash equilibria
and provide equilibrium selection results in generic games.

Our interest in agents who use social information is motivated by the fact that individuals
may learn from media sources, colleagues and friends as well as from their personal experi-
ence. Of course, observing other people’s financial success, social status, and even whether
they are happy is a long way from observing the cardinal value of their realized utility, but
we simplify here and suppose that the agents observe the payoffs of the best-performing
other agents, perhaps because the payoffs in question are derived from underlying monetary
income. We postulate that agents reexamine their strategies according to a simple social
comparison rule: if they are getting close to the current highest payoff realized in their own
population, then they are content, and continue to play the same action; otherwise, they are
discontent and experiment at random with different actions in hopes of doing better.

In addition to the random play of discontent agents, we impose three other behavioral
assumptions prevalent in the literature. First, we assume that content agents tremble (or
make a mistake) with a small probability; when this happens they experiment with other
actions and become discontent. As in Foster and Young (1990), Kandori et al. (1993),
Young (1993), we will focus on the limits of the ergodic distributions of the system induced
by our learning procedures as this mistake probability goes to zero. Second, we assume that
agents only reassess their play with a probability bounded away from 1, as in Nöldeke and
Samuelson (1993), and Samuelson (1994). Finally, as in Sandholm (2012), we assume there
is a small (relative to the population) number of committed agents who play specific actions
regardless of what they observe. This ensures that every action has positive probability even
when there are no trembles.1

In our low information model, agents observe the highest current utility realized in their
own population without observing the corresponding actions. This restricted form of in-
formation seems plausible in many real world social interactions. It is also of relevance
to laboratory experiments on large extensive form games, such as infinitely repeated games:

1Committed agents are also used in Heller and Mohlin (2017). We discuss this modeling choice further
in Subsection 8.1.
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Here it is feasible to tell participants the payoffs that other participants received in past plays
of the repeated game, but not to tell them the exact strategies used by the participants who
obtained high payoffs.2 In this model, agents remember just whether they are content, and
if so, what they did last period, and discontent agents randomize uniformly over all actions.3

We show that all of the states with positive probability in the limit ergodic distribution –
that is, the “stochastically stable” states – are those where all but the committed agents are
getting about the same payoff in their own population. Since some committed agents always
obtain the highest possible payoff, in generic games these limit states must be approximate
Nash equilibria.

Under these assumptions, our equilibrium selection result is that the stochastically sta-
ble states are those where the largest number of shocks is required to lead the system to
another equilibrium state; these numbers are the “radii” of the equilibria (Ellison (2000)).
The intuition of this result is that once a sufficiently large number of trembling agents desta-
bilize an equilibrium, some agents enter a search mode that eventually pushes everyone into
search due to the limited social information and memory, allowing any equilibrium to be
reached without further trembles. In other words, equilibrium selection boils down to the
difficulty of escaping from each equilibrium. We find that while the radius of a pure strategy
Nash equilibrium is generally large, growing linearly with the size of the population, every
mixed equilibrium has radius one, which in turn implies that stochastically stable states
correspond to pure equilibria if they exist, otherwise they correspond to all of the mixed
equilibria. Moreover, using the methodology of Levine and Modica (2016), we are able to
characterize the relative amount of time spent at different equilibria, and show that in large
populations the system spends less time at mixed strategy equilibria than at any of the pure
strategy equilibrium, including the ones that are not stochastically stable, and even when the
mixed equilibrium gives the players a higher payoff.4 Furthermore, we show that the same
conclusion can hold when the noise in the system comes from noisy observation of others’
payoffs as opposed to exogenous trembles.

2See for example the infinitely repeated prisoner’s dilemma experiments surveyed in Dal Bó and Fréchette
(2018). In many of these, a substantial minority of participants defects most or all of the time, and receive
a much lower overall payoff than participants who appear to be “conditionally cooperative,” which raises the
question of what would happened if participants were told something about the payoffs that others have
received in previous plays of the repeated game.

3Fudenberg and Peysakhovich (2014) find experimentally that last period experiences have a larger impact
on behavior than do earlier observations, and that individuals approach optimal strategies when provided
with summary statistics (see also Erev and Haruvy (2016)).

4Fudenberg and Imhof (2006) characterize the relative frequencies of various homogeneous steady states
in a family of imitation processes, but these processes can in some games spend most of their time near
non-Nash states. Like in our model, Levine and Modica (2013) examine the relative amount of time spent
at different steady Nash states but the dynamic is driven by group conflict rather than learning errors.
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In our high information model, agents have more social information: they observe the
highest current payoff in their own population together with the actions that yielded such
payoff.5 The agents also have more memory. Specifically, they recall the best-performing
actions in the last T periods and their most recent action, in addition to whether they are
content. When people can remember the strategies that worked well for others it seems
natural to mimic those strategies. We assume that discontent agents experiment randomly
over remembered best responses and last period action instead of over all actions. If agents
recall best responses only in the last period, then agents’ behavior reduces to playing a
myopic best response, and we show that our social learning process and the standard best
response with inertia dynamic (Samuelson (1994)) predict the same stochastically stable set.
In particular both models can have stochastically stable cycles, and only pure Nash equilibria
as stochastically stable states if the game is acyclic (Young (1993)).

We characterize the role of memory on stochastically stability of Nash equilibria by iden-
tifying a new acyclicity condition, which nests Young’s widely used definition of acyclicity.
We show only Nash equilibria are stochastically stable if agents can recall best responses
in the last k × l periods when the game is k × l acyclic, meaning that from any strategy
profile there is a best response path to a k × l curb block. Because every game is k × l

acyclic for k and l at least as large as the action spaces, when memory is sufficiently long,
the high-information model leads to stochastic stability of approximate Nash equilibria in
any game, even games that have only mixed equilibria. To understand this, note that play
will eventually enter a curb block of some specific size because the game is k × l acyclic.
If some agents are not playing best responses then all agents are pushed into search mode
with positive probability. Since discontent agents recall and experiment among recent best
responses, they eventually play the actions corresponding to a mixed equilibrium in the curb
block. Finally, we show by example that in the high information model mixed equilibria can
be favored over pure ones.

The main methodological contribution of the paper is to characterize learning dynamics
by combining the standard theory of perturbed Markov chains with the method of circuits,
adapting Levine and Modica (2016) Theorem 9 to the case in which there is a single circuit.
To illustrate the complementarity between this approach and past work, we show how to find
the stochastically stable set by constructing circuits of circuits, and alternatively by using
Ellison’s (2000) radius-coradius theorem. Our results also contribute to the long-standing
debate about pure versus mixed equilibria, and provide a clear connection between what

5We consider environments in which people have access to public records that aggregate information
about payoffs as well as behavior. However, many institutions delete all records after a fixed period of time
(due to storage costs or law), and record-keeping devices may deteriorate or become obsolete.
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agents observe and equilibrium selection.

Related Literature

Our paper belongs to the larger literature that uses non-equilibrium adaptive processes to
understand and predict which Nash equilibria are most likely to be observed. The literature
on stochastic fictitious play (Fudenberg and Kreps (1993), Fudenberg and Levine (1998),
Benaïm and Hirsch (1999), Hofbauer and Sandholm (2002)) concludes that stable equilibria
can be observed while unstable equilibria cannot be, but also concludes there can be stable
cycles.6 Roughly speaking, stochastic fictitious play does not generate enough experimenta-
tion for only Nash equilibria to be stochastically stable. The same is true in the literature
that studies deterministic best-response-like procedures perturbed with small random shocks
(Foster and Young (1990), Kandori et al. (1993), Young (1993), Samuelson (1994)), although
that literature does generically provide a way of selecting between strict equilibria in specific
classes of games.

The idea that players observe outcomes and update play with probability less than 1
appears in the Nöldeke and Samuelson (1993) analysis of evolution in games of perfect
information; our model differs in that agents are able to observe the average payoff and/or
action distribution not the outcomes of all matches for the current round of play.7 The
ideas that agents only change their actions if they are “dissatisfied” and/or that they have
information about the distribution of payoffs have also been explored in the literature; these
papers (Björnerstedt and Weibull (1996), Binmore and Samuelson (1997)) have assumed
that agents receive information about the actions or strategies used by agents they have not
themselves played. Our committed agents resemble the “non-conventional” agents proposed
by Myerson and Weibull (2015) in that committed agents consider a (strict) subset of actions.

A more recent literature (Foster and Young (2003; 2006), Young (2009), Pradelski and
Young (2012)), has considered learning procedures where players randomize when they are
“dissatisfied.”8 The closest of these to our work is Pradelski and Young (2012) which considers
a model in which agents can be watchful, content, hopeful or discontent, and keep track of

6Most of this work studies models where there is a single agent per side or where all agents receive the
same information. Unlike these papers, Fudenberg and Takahashi (2011) studies stochastic fictitious play in
a model where, as here, there are many agents in each population and each agent has their own personal
experience.

7As in our model, this stochastic observation technology means that every sequence of one-move-at-a-time
intentional adjustments has positive probability; they use this to show that if a single state is selected as
noise goes to 0, it must be a self-confirming equilibrium (Fudenberg and Levine (1993)).

8These papers focus on when the procedure converges to Nash equilibrium with probability 1. Hart
and Mas-Colell (2006) and Fudenberg and Levine (2014) have the same focus but do not use the device of
“dissatisfied states.”
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an aspiration utility based on their personal observation. Unlike in our models, this paper
assumes that agents are more likely to adopt a new action the larger the payoff improvement
or payoff level. Their learning process selects an efficient equilibrium when pure equilibria
exist; however, it can spend almost all the time at non-Nash efficient outcomes when they
do not.

Our study of social comparisons is also related to Babichenko (2018) and Pradelski (2015),
who analyze models of social influence in which agents’ payoffs depend on an aggregate statis-
tic and agents observe and best respond to information about the actions played. Pradelski
(2015) considers a model with heterogeneous agents playing a two-action coordination game,
and compares the stochastically stable sets when agents respond to the current distribution
of actions to that when they respond to the time-average distribution. Similarly, Babichenko
(2018) studies the long-run stability of approximate pure Nash equilibria when players choose
a distorted best response to the current average of players’ actions in continuous action games.

Our high information procedure is related to Young (1993; 1998), and Hurkens (1995),
which consider models with one agent in each player role, where the players observe and
best respond to a random sample of the actions recently played, though these papers studies
models with only 1 agent in each player role, a setting in which the strategic myopia as-
sumption is harder to justify.9 In these models the observation of a random sample from the
past actions serves as a source of noise, while in our high information model all actions for
a fixed past horizon are observed. Their results differ substantially from ours when minimal
curb blocks contain only mixed equilibria or when they correspond to the entire game. More
recently, Oyama et al. (2015) study a continuous time model with a continuum of agents,
where agents respond to a finite and possibly small sample of current play. Most of their
results concern games that can be solved by the iterated elimination of strategies that are
not contained in the minimal p-dominant set for some p > 1/2 (Tercieux (2006)).

2 The Population Game

Let G = ((uj, Aj)j=1,2) be a two player normal-form game where Aj is the finite set of actions
for player j, uj : Aj × A−j → R is the utility function for player j, and uj(aj, a−j) is player
j’s utility when choosing action aj ∈ Aj against the opponent playing a−j ∈ A−j. For any
finite set X, we let ∆(X) denote the space of probability distributions over X. We extend
uj to mixed strategy profiles α ∈ ∆(Aj)×∆(A−j) in the usual way. For ζ ≥ 0, we say that

9The two papers differ in whether sampling is with or without replacement and in how beliefs are related
to the sample that is observed. The role of large populations in justifying strategic myopia for learning in
games was first mentioned by Fudenberg and Kreps (1993), who however analyzed a model with a single
agent per side

5



âj ∈ Aj is a ζ-best response to α−j ∈ ∆(A−j) if uj(âj, α−j) + ζ ≥ uj(aj, α−j) for all aj ∈ Aj.
We are interested in the population game generated when G is played by agents in two

populations, indexed by i. Agent i of each population j chooses an action aji ∈ Aj. There
are N agents in each population, and agents are matched round robin10 against each agent
of the opposing population. For any integer K and any set X, let ∆K(X) be the subset
of ∆(X) where each coordinate is an integer multiple of 1/K. We want to deal with the
population fractions playing different actions. We call ∆N(Aj) the grid for population j;
the grid is the product space ∆N(A) = ∆N(A1) × ∆N(A2). We will also make use of the
grids for subsets of the population. Aggregate play in population j can be represented by
a mixed strategy αj ∈ ∆N(Aj), where αj(aj) is the proportion of agents i playing aji = aj.
The utility of agent i is uji (a

j
i , α

−j) since he plays each opponent in the opposing population
in turn.

We make the following assumptions about payoffs:

Assumption 1. For each player j and every α−j ∈ ∆N(A−j), arg maxaj∈Aj u
j(aj, α−j) is a

singleton.

This assumption holds for generic payoff functions. It implies in particular that there is
a unique best response to any pure action. Throughout the paper, we maintain this and all
other numbered assumptions from the point they are stated.

Assumption 2. No player j has an action âj ∈ Aj such that uj(âj, α−j) ≥ maxaj∈Aj u
j(aj, α−j)

for all α−j ∈ ∆N(A−j).

This condition rules out games where one player has a pure strategy that weakly domi-
nates all others.

Since a unique best response must be strict and action sets are finite, we may define g > 0

as the smallest difference between the utility of the best response and second best response
to any pure strategy. Note that if ζ < g then there is a unique ζ-best response to every pure
strategy. Moreover, in conjunction with Assumption 2, ζ < g also implies that there is no
approximately dominant strategy. Formally, there is no player j and action âj ∈ Aj such
that uj(âj, α−j) + ζ ≥ maxaj∈Aj u

j(aj, α−j) for all α−j ∈ ∆N(A−j).
10Equivalently we may think of each agent playing against an average of the opposing population. This

can be thought of as an approximation to a situation where each agent is randomly matched against the
opposing population a substantial number of times. See Ellison et al. (2009) for conditions under which this
approximation is valid.
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3 Low Information Social Learning

In the low-information learning model, agents have no direct information about the behavior
of others, but observe only the frequency of utilities in their own population. This model
also assumes that agents only remember whether they are content and if so what action they
played in the previous period.

The population game described above is played in every period t = 0, 1, 2, . . .. An agent’s
type at the start of period t is θjt ∈ Θj ≡ Aj ∪ {0} ∪ Ξj. In each population there is a fixed
set Ξj of committed agents. An agent ξj ∈ Ξj is committed to the action aj(ξj) ∈ Aj. We
assume that there is at least one agent committed to each action. We refer to the other
agents as learners with type Aj ∪ {0}. If θjit ∈ Aj the learner is content with the action
θjit, and if θjit = 0 the learner is discontent. The process begins with an exogenous initial
distribution of these types.

Committed agents play the action they are committed to and never change their type.
Each learner trembles with independent probability ε, randomizing uniformly over all actions.
A discontent learner randomizes uniformly even if he does not tremble, while a content learner
who does not tremble plays ajit = θjit.11 We assume the action choice made by trembling and
discontent agents at the start of the period is held fixed throughout the round robin.

A learner who trembled is discontent, θjit+1 = 0. Each non-trembling learner has an
independent probability 1 > p > 0 of being active and complementary probability 1 − p

of being inactive. Inactive learners preserve their type, θjit+1 = θjit. Given the population
play αt, let U j(α−jt ) ∈ RN denote the vector of utilities in population j corresponding to
uji (a

j
it, α

−j
t ) for each ajit ∈ Aj, and let φj(αt) ∈ ∆N(U j(α−jt )) be the frequency of utilities

of population j.12 Let uj(φj(αt)) be the highest time-t utility received in population j.13

Let ν ≥ 0 be the social comparison parameter. If uji (a
j
it, α

−j
t ) > uj(φj(αt)) − ν the active

learner is content, θjit+1 = ajit, otherwise he is discontent, θjit+1 = 0.14 Note that this social
comparison allows the learner to determine whether he is playing a ν-best response, since
there is always a committed agent playing a ν-best response. However, the learner cannot
identify which actions are ν-best responses, as he does not see the actions played by others.
Instead we assume that if an agent learns he is not playing a ν-best response, he chooses an
action uniformly at random.

11Notice that learners tremble whether or not they are discontent, but discontent learners play the same
way whether they tremble or not.

12Let Aj(uj , α−jt ) ⊆ Aj be the (possibly empty) subset of actions ajit for which uji (a
j
it, α

−j
t ) = uj . Then

the time-t frequency of utility level uj is φj(αt)[uj ] =
∑
ajit∈Aj(uj ,α−j

t ) α
j
t (a

j
it).

13Agents observe the average payoff frequency of actions played, not the payoff frequency across matches.
14This is a very naive and non-Bayesian form of learning; active agents acquire information passively and

make no effort to observe anything else.
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In summary, the play of the learners is governed by three parameters: the probability
ε of trembling, the probability p of being active and the tolerance for getting less than the
current highest possible payoff ν.

4 Aggregate Dynamics with Low Information

The behavior of individual agents gives rise to a Markovian dynamic. Let Φj
t ∈ ∆N(Θj) be

a vector of population shares of the player j types in period t. Define the (finite) aggregate
state space Z = ∆N(Θ1)×∆N(Θ2) to be the set of vectors z = (Φ1,Φ2). We derive the exact
formula for the aggregate transition probabilities Pε(zt+1|zt) in Appendix A.1. Our interest is
in studying this Markov process and how it depends upon ε, the tremble probability of each
learner. Let αj(z) ∈ ∆N(Aj) be any feasible action profile of population j in state z. Since
content learners all use pure strategies, but not all of those strategies need be the same, we
say that a state z is pure for population j if all learners in population j have the same type,
and that the state is pure if it is pure for both populations. Otherwise, we refer to it as a
mixed state.

We start by identifying those states that correspond to approximate Nash equilibria and
that are robust to the play of the committed agents. We refer to these as ζ-robust states.

Definition 1. For any number ζ ≥ 0, a state z is ζ-robust if all the learners from each
population j are content and playing a ζ-best response to α−j(z).

From now on, we set the tolerance level ζ to equal the social comparison parameter
ν. Notice that the fact that in a ν-robust state the learners are playing a ν-best response
to α−j(z) and that the committed agents are playing their committed actions means that
aggregate play of the learners corresponds to a ν-Nash equilibrium. However, the finiteness
of the populations implies that some mixed equilibria can only be approximated and do
not exactly correspond to the play of learners in a mixed ν-robust state, for example those
mixed equilibria with irrational mixing probabilities. Define M ≡ max{#Ξ1,#Ξ2} to be
the maximum number of committed agents in the two populations. To ensure existence of
ν-robust states it suffices for the social comparison parameter ν to be greater than 0, and
for M to be small relative to N . The proofs of the results for this section can be found in
Online Appendix B.1.

Lemma 1. If ν > 0, there is an η such that, if N/M > η, a ν-robust state exists.

We assume that the tolerance level ν is sufficiently small relative to g so that the ν-best
responses indicated by the social comparison satisfies the implications of our assumptions
on payoffs.
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Assumption 3. ν < g.

The next lemma says that the implications of our assumptions on (approximate) best
responses still hold in the population game with committed agents, provided there are not
too many of them relative to N .

Lemma 2. There is a η such that if N/M > η and aj is a strict best response to a−j ∈ A−j,
then aj is a strict best response to all α−j ∈ ∆N(A−j) satisfying α−j(a−j) > 1−M/N . In
particular, if aj is the only ν-best response to a−j ∈ A−j and ν < g then it is a strict best
response to a−j, so the same conclusion obtains.

Assumption 4. N/M ≥ η where η is large enough that Lemmas 1 and 2 hold.

This assumption and Assumption 3 yield the following result.

Lemma 3. In any 0-robust state, the action profile of the learners must be a pure strategy
Nash equilibrium, and any pure strategy Nash equilibrium corresponds to the play of learners
in some 0-robust state.

As shown by Lemma B4 (Online Appendix B.2), Pε is irreducible and aperiodic. This
implies that for ε > 0 the long-run behavior of the system can be described by a unique
invariant distribution µε ∈ ∆(Z) satisfying µεPε = µε. We denote by µεz the (ergodic)
probability assigned to state z. To characterize the support of the ergodic distribution
as ε → 0, we use the concept of the resistance of the various state transitions. Because
Pε(z

′|z) is a finite polynomial in ε for any z, z′, Pε is regular, meaning that limε→0 Pε = P0

exists, and if Pε(z′|z) > 0 for ε > 0 then for some non-negative number r(z, z′) we have
limε→0 Pε(z

′|z)ε−r(z,z
′) exists and is strictly positive. We then write Pε(z′|z) ∼ εr(z,z

′); let
r(z, z′) ∈ [0,∞] denote the resistance of the transition from z to z′. Moreover if Pε(z′|z) = 0

then this transition is not possible and we set r(z, z′) = ∞, while if P0(z′|z) > 0 we have
r(z, z′) = 0. A path z is a finite sequence of at least two not necessarily distinct states
(z0, z1, . . . , zt) and its resistance is defined as r(z) = r(z0, z1) + · · ·+ r(zt−1, zt). Notice that
we allow for loops where some states are revisited along the path, and that some transition
probabilities are bounded away from zero independent of ε.

5 Analysis of the Low Information Model

Our main goal is to characterize the long-run behavior of aggregate play. We show that in
games with pure strategy equilibria, the ν-robust states with the largest radius (in the sense
of Ellison (2000)) are most likely to be observed in the long run, and in games without pure
strategy equilibria, all ν-robust states are about equally likely to be observed. To do this we
first identify which transitions between states are most likely.
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5.1 Characterizing the Least-Resistance Paths

The next lemma shows that if all the learners are currently playing a ν-best response, there
is a zero resistance path to a ν-robust state in which they play the same way. To state
this precisely, we define a partial ordering � over states. Let Dj(z) be the number of
discontent learners of player j in state z. Let αj(z) ∈ ∆N−Dj(z)(Aj) be the action profile
corresponding to the content and committed types in z. We write z � z′ if for j = 1, 2

Dj(z) ≥ Dj(z′) and αj(z) is consistent with αj(z′) in the sense that (N − Dj(z′))αj(z′) =

(N −Dj(z))αj(z) + (Dj(z)−Dj(z′))α̃j for some action profile α̃j ∈ ∆Dj(z)−Dj(z′)(Aj). This
says that we can get from z′ to z by making some learners discontent.

Lemma 4. If z � ẑ and ẑ is ν-robust then there exists a zero resistance path (of length 1)
z from z to ẑ.

The proofs of this and the next two results can be found in Appendix A.2. The next
lemma says that in calculating least resistance paths we may assume that discontent learners
remain discontent. We refer to it as the free to stay discontent principle.

Lemma 5. For any path z = (z0, z1, . . . , zt) starting at any z0, there is a path z̃ = (z̃0, z̃1, . . . , z̃t̃)

with z̃0 = z0 and r(z̃) ≤ r(z) satisfying the property that z̃τ � z̃τ−1 and z̃t̃ � zt for all
1 ≤ τ ≤ t.

These two lemmas combined enable us to compute least resistance paths between ν-
robust states by determining how many content learners must switch actions to move from
one to the other and then computing the resistance to making those learners discontent. In
effect it enables us to compute least resistance by “counting the least number of trembles.”

We introduce a concept that captures the support of mixed strategy profiles that cor-
respond to the play of content learners. More precisely, the j-width of a state z denoted
wj(z) ∈ Z+ is the number of distinct types for content learners of player j. The width of a
state z is w(z) = w1(z) + w2(z). Observe that pure ν-robust states z have w(z) = 2.

Define a proto ν-robust state z, as a state in which all content learners from each popu-
lation j are playing a ν-best response to α−j(z). We divide these into three types: a totally
discontent state is one in which w(z) = 0 so all learners of both players are discontent; a
semi-discontent state in which all learners of one player are discontent but w(z) > 0, so
at least one learner of the other player is content, and a standard state in which at least
one learner of each population is content. The next result characterizes transitions between
states that involve proto ν-robust states with the property that paths have no resistance.

Lemma 6. (1) If z is totally discontent there is a zero resistance path to every ν-robust
state.

10



(2) If z is proto ν-robust but not totally discontent there is a zero resistance path to a
ν-robust state ẑ; and if z is standard we can choose ẑ so that w(z) ≥ w(ẑ).

(3) If z is not proto ν-robust there exists a zero resistance path to a state z̃ with w(z) >

w(z̃).

5.2 Absorbing States and Approximate Nash Equilibria

Our first theorem shows that when there are no trembles the ν-robust states are exactly the
absorbing states, with all other states transient.

Theorem 1. If ε = 0 then every ν-robust state is absorbing and all other states are transient.

Proof. Start in a ν-robust zt = z. Since ε = 0 no learner trembles and all agents do not
change play. All learners remain content, regardless of being active or not, so θjit+1 = ajit.
The committed agents always keep their type by assumption. This implies that zt+1 = zt

with probability 1 so z is absorbing.
If states are proto ν-robust there is a zero resistance path to a ν-robust state by Lemma

6 part (2), otherwise, by Lemma 6 part (3), there is a zero resistance path to a state with
strictly less width. As long as the system does not reach a proto ν-robust state, it has
positive probability of moving along zero resistance paths to states with strictly lower width,
applying part (2) and (3) of Lemma 6, until it visits a proto ν-robust state with w > 0 or
reaches a totally discontent state, from which it has a positive probability of being absorbed
at a ν-robust state as established in Lemma 6 part (1).

Since there are a finite number of states, every state is either recurrent or transient,
when ε = 0 the system will eventually be absorbed at a ν-robust state (and thus at a ν-Nash
equilibrium). We consider both pure equilibria (as in Kandori et al. (1993), Young (1993),
Young (2009)) and mixed equilibria (similar to Foster and Young (2006), Hart and Mas-
Colell (2006), Pradelski and Young (2012), Fudenberg and Levine (2014)), though unlike
those papers, we also characterize the stochastically stability of approximate equilibria.

5.3 Characterization of the Limit Invariant Distribution

Our next result is a corollary that characterizes the relative frequency of different ν-robust
states. Because the transition kernel Pε is regular, Young (1993, Theorem 4) implies that
as ε → 0 the ergodic distributions µε have a unique limit distribution µ, which is one
of the possibly many invariant distributions for P0. A state z is stochastically stable if
limε→0 µ

ε
z > 0 (Foster and Young (1990)). By Theorem 1 when ε is small but positive, the
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invariant distribution µε puts almost all the probability on one or more ν-robust states. The
basin of the ν-robust state z is the set of states for which there is a zero resistance path to
z, and no zero resistance path to some other ν-robust state z′.15 We let rz denote the radius
of the ν-robust state z; this is defined to be the least resistance of paths from z to states out
of its basin.

In characterizing the ergodic distribution µε for small ε, we combine some standard
technical tools and the more recent method of circuits developed by Levine and Modica
(2016). Let R(z, z′) denote the least resistance of any path that starts at z and ends at z′.
We say a set of ν-robust states Ω is a circuit if for any pair z, z′ ∈ Ω there exists a least
resistance chain, meaning a sequence z = (z0, z1, . . . , zt) with z0 = z to zt = z′ with zk ∈ Ω

and R(zk, zk+1) = rzk for k = 0, . . . , t− 1. That is, one of the most likely (lowest order of ε)
transitions from z0 is to z1, one of the most likely transitions from z1 is to z2, and so forth.
The next corollary follows directly from Theorem 9 in Levine and Modica (2016), specialized
to the case where the only recurrent classes when ε = 0 are singletons, and there is a single
circuit.

Corollary 1. If all ν-robust states are in the same circuit then µεz
µε
z′
∼ εrz′−rz , and in particular

the set of stochastically stable states is exactly the ν-robust states with the largest radius.

We sketch two proofs of the Corollary to illustrate the complementarity between the
methodology of Ellison (2000) and Levine and Modica (2016). First we use Ellison’s approach
to show that the stochastically stable states are those with the largest radius. For any target
z = zt define the modified resistance from z′ = z0 to be mr(z′, z) = min z=(z′,z1,...,z)R(z′, z1) +

· · ·+R(zt−1, z)− rz1 − · · · − rzt−1 and the modified co-radius as cz = max z′mr(z
′, z). If S is

a union of recurrent classes, then the radius rS is the least resistance path from S out of the
basin of S, that is, to states where there is a positive probability of being absorbed outside
of S. Define the modified co-radius cS of a set of recurrent classes S to be the minimum
over z ∈ S of cz. Ellison shows that a sufficient condition for a set S of ν-robust states to
be stochastically stable is that rS > cS. If we let r̄ denote the largest radius of any ν-robust
state then the set S of ν-robust states with radius r̄ itself has radius rS at least equal to r̄. By
assumption, all ν-robust states are in the same circuit, so we can compute an upper bound
on cS by considering, for each state z′ /∈ S, a least resistance chain from z′ to z, meaning a
sequence of states for which the resistance R(zk, zk+1) = rzk . The modified resistance of this
chain is mr(z′, z) = rz′ and since rz′ < r̄ = rS the conclusion follows.

For the sharper result that µεz
µε
z′
∼ εrz′−rz , we use the method of Levine and Modica (2016).

For any ν-robust state z we consider trees with root z, where the nodes of the tree are all
15Equivalently, the basin of the ν-robust state z is the set of starting states that lead to state z with

probability one according to P0.
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of the ν-robust states and the resistance of the tree is the sum of all the R(zk, zk+1) where
zk+1 is the successor of zk. Using the Markov chain tree formula (see for example Bott and
Mayberry (1954)) it follows, as noted by Freidlin and Wentzell (1984), that log(µεz/µ

ε
z′)/ log ε

converges to the difference in resistance between the least resistance tree with root z and
that with root z′. Notice that since each ν-robust state must be in the tree, the resistance
of connecting that node is at least rzk , so that the least resistance tree cannot have less
resistance than the sum of the radii of all nodes except the root. We now show there is a
tree with exactly that resistance by building it recursively. Place the root z first. There
must be some remaining node that can be connected to the tree at resistance equal to the
radius because all stable states are in the same circuit. Add that node to the tree with that
resistance. Continuing in this way we eventually construct a tree in which the resistance is
exactly the sum of radii of all but the root node. It follows that the difference in resistance
between the least resistance tree with root z and root z′ is exactly the difference in the radii
which is what is asserted in the Corollary.

5.4 Exact Pure Strategy Equilibria and Stochastic Stability

In this subsection, we characterize the stochastic stability of pure strategy Nash equilibria.
To this end, we assume that pure strategy Nash equilibria exist, and set the social comparison
parameter ν = 0. Recall that every pure strategy Nash equilibrium corresponds to the play
of learners in a 0-robust state.

Learners play a fundamental role in determining least resistance paths. On a path that
moves away from a 0-robust state, content learners must tremble, and so the path has positive
resistance. In addition to the random mistakes, every active learner that is not playing a
best response transitions to discontentment with no resistance irrespective of her current
type. For each 0-robust state z, we define rjz ∈ Z+ for player j to be the least number of
learners of player −j that need to deviate for there to be a learner of player j that is not
using a best response. Then in finding least resistance paths out of the basin of a 0-robust
state z, we will establish that the critical threshold to be considered is the smaller of r1

z , r
2
z .

We will use this to characterize the radius of a 0-robust state z, and show that the minimum
resistance to any other 0-robust state z′ is the same for every z′.

Theorem 2. (1) If z is a 0-robust state, its radius is rz = min{r1
z , r

2
z} > 0. Moreover for

any 0-robust state z 6= z there is a path from z to z that has resistance rz.

(2) If z and z′ are 0-robust states, then µεz
µε
z′
∼ εrz′−rz and in particular those states with

largest radius are stochastically stable.
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Proof. Consider a least resistance path z from a 0-robust state z to any 0-robust state z.
From Lemma 5 we know that there exists a path z̃ = (z̃0, z̃1, . . . , z̃t) from z̃0 = z with
r(z̃) ≤ r(z) and z̃t � z . Since z̃t � z and z is 0-robust, by Lemma 4 there is a zero
resistance path from z̃t to z. Then it is sufficient to compute r(z̃) in order to obtain the
radius of z.

We begin by characterizing the basin of the 0-robust state z. Lemma 5 implies it suffices
to consider Dj(z̃τ ) for τ ≤ t, since discontent learners stay discontent on the path z̃. If for
both players j Dj(z̃τ ) < rz we show that z̃τ is in the basin of z. Suppose that no learner
trembles, and discontents play the unique best response aj in each population j, are active
and become content. This transition has no resistance. In the resulting state all learners
are content and playing aj the unique best response to α−j; that is, the state is z. Hence
we have a zero resistance path back to z. However to be in the basin there must not be a
zero resistance path to some different 0-robust state ẑ. We show that any such path starting
at z̃τ has a resistance of at least one. Moving along any such path requires that all content
learners of at least one player j play âj 6= aj, by Assumption 1. Since Dj(z̃τ ) < rz for
j = 1, 2 all content learners are playing the best response which implies that any transition
(z̃τ , z

′) on the path to ẑ requires that Dj(z′) > Dj(z̃τ ) for at least one player j. But in this
transition at least one content learner who is playing the best response becomes discontent
so this transition has resistance at least one.

Next, we establish that any path from z to any other 0-robust state ẑ has resistance
rz. We show that if Dj(z̃τ ) ≥ r−jz for either player j then there exists a zero resistance
path to any 0-robust state. Suppose that Dj(z̃τ ) ≥ r−jz for one player j. Then consider a
transition where no learner trembles and the action profile α is such that all content learners
in population −j are active and observe a better response played by a committed agent,
so become discontent, while learners in population j are inactive. This transition has zero
resistance. The next transition has all learners not trembling and an action profile α so that
contents in j are active, get a signal about a better response provided by a committed agent,
and become discontent; while learners in −j are inactive. It follows that this transition has
no resistance. By Lemma 6 there is a zero resistance path to any 0-robust state. Hence part
(2) follows directly from Corollary 1.

Intuitively, as long as the system remains within the basin of a pure equilibrium, not too
many discontent agents are experimenting with new strategies, and the rest of the learners
are content and playing a best response. Thus from states in this basin the discontent
learners are likely to find their way back to equilibrium. Interestingly, we find that once
the system leaves the basin of a pure equilibrium, there must be lots of agents trying new
strategies, which in turn pushes everyone into the state of searching. One key observation
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is that random search is relatively as likely to find one equilibrium as another, so that all
that matters is rate at which the different basins are left. We sow that this corresponds to
the difference in radii, so that the system spends approximately εrz′−rz times as much time
at the equilibrium z as at the equilibrium z′. Note that our equilibrium selection result is
simple in that it only requires one to compute the radius rz of each equilibrium.

5.5 Stability of Approximate and Mixed Strategy Equilibria

We now analyze the ergodic distributions and stochastically stable states in general finite
two player games, where pure strategy equilibria need not exist. We provide the complete
structure of the transitions between equilibria. We will show that the system starting at
a mixed equilibrium either moves with resistance 1 towards mixed equilibria with smaller
supports, or transitions along resistance 1 paths to every equilibrium. On the other hand we
establish that if the system begins at pure equilibria, it transitions to every equilibrium.

We now set the social comparison parameter ν > 0, since exact mixed strategy equilibria
need not be attainable by population play represented on the grid ∆N(A). In this case
Lemma 2 ensures that a ν-robust state exists. As we observed above, in ν-robust states,
aggregate play corresponds (modulo the play of the committed types) to an approximate
equilibria. That is, in any ν-robust state z the action profile of the learners α̃ is such that for
every learner in each population j, uji (ã

j
i , α

−j) ≥ uji (a
j
i , α

−j) − ν for each ãji in the support
of α̃j and all aji ∈ Aj.

Note that, starting at a pure Nash equilibrium â, as the play of learners in population
−j shifts to put increasingly more weight on actions other than â−j, eventually two things
happen to the learners j’s best responses. First, additional actions may become ν-best
responses to the play of population −j in addition to âj, and second âj will eventually no
longer be a ν-best response to the play of the opposing population −j. When ν = 0 the
assumption of unique best responses on the grid (Assumption 1) assures that these two
changes take place for exactly the same play of population −j. However, with ν > 0, in
general additional ν-best responses arise before âj is no longer a ν-best response. Then it is
possible that the system leaves a pure Nash equilibrium by having content agents trembling
in both populations so that learners in each population have additional ν-best responses.
When ν = 0 this possibility does not exist: Since the point at which a critical number of
learners in one population have a different best response already pushes the system out of
the basin, it cannot be the least resistance path for content learners in both populations to
tremble so that content agents in both populations are not playing a best response. In the
following we impose an assumption to rule out this possibility when ν > 0 as well.
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To rigorously describe the structure of the basin for any pure ν-robust state z with
content actions corresponding to a given pure action a, we define rjz ∈ Z+ for player j to be
the least number of learners of player −j that need to deviate so that aj is no longer the
only ν-best response to any feasible play of population −j. Similarly, let rjz ∈ Z+ be the
least number of learners of player −j that must deviate for there to be a learner of player j
that is not playing a ν-best response. Observe that rjz ≥ rjz and N −#Ξ−j ≥ rjz, r

j
z ≥ 0 for

all j. If for both j rjz > r1
z + r2

z then “sidewise” escape from the equilibrium where learners
tremble in both populations will have lower resistance than “direct” escape where learners
tremble in only one population. However, since for both j |rjz − rjz| → 0 as ν → 0, we can
find conditions under which there is no sidewise escape with lower resistance than any direct
escape.

Lemma 7. There is a χ > 0 and γ > 0 with N/M > γ and ν < χ such that for every pure
ν-robust state z, there is at least one j that rjz ≤ r1

z + r2
z, and rjz ≥ 1 for both j.

We prove this result in Online Appendix B.3. We assume that the parameters ν and
N/M are such that Lemma 7 holds, and we establish a separation between pure ν-robust
states so that direct escape has always lower resistance.

Assumption 5. ν < χ and N/M ≥ γ where γ is large enough and χ is small enough that
Lemma 7 holds.

We next characterize the least resistance to leave the basin of a pure ν-robust state z in
terms of the thresholds r1

z and r2
z . Note that if a is a pure equilibrium, the least number

of learners that must deviate before the original actions fail to be a best response increases
linearly with N .

Lemma 8. The radius of a pure ν-robust state z is rz = min{r1
z, r

2
z}, and if z is any ν-robust

state there is a path from z to z with resistance equal to rz.

The proof of this and the next lemma can be found in Appendix A.3. We introduce a
notion that captures the largest mass of learners in the support of the current frequency of
content actions: for any state z let the height h(z) ∈ Z+ be the largest number of learners
playing an action in the support of ᾱ(z) the action profile that corresponds to the aggregate
play of contents and committed agents.

We now determine the least resistance to leave the basin of mixed ν-robust states. In
general, there will be multiple mixed approximate equilibria in a neighborhood of mixed equi-
librium, so one might expect to move between those mixed approximate equilibria through
one agent changing play at a time. The next lemma shows that, unlike the case of pure
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ν-robust states, the radius of mixed ν-robust states is 1 regardless of N , and that once the
process leaves the basin of a mixed ν-robust state it can either move with resistance 1 to
another mixed ν-robust state with weakly smaller support or with resistance 1 to a pure
ν-robust state.

Lemma 9. The radius of a mixed ν-robust state z is rz = 1, and there is either a path with
resistance 1 to every ν-robust state z or to a ν-robust state z̃ with w(z̃) ≤ w(z) and either
w(z̃) < w(z) or h(z̃) > h(z).

Equipped with these lemmas, we can determine which states are stochastically stable:

Theorem 3. For every pair z, z′ of ν-robust states, µεz
µε
z′
∼ εrz′−rz , so in particular the stochas-

tically stable states are those with the largest radius.

Proof. The fact that all ν-robust states are connected by least resistance paths follows from
Lemmas 8 and 9. The first conclusion follows from Corollary 1, and the second follows
immediately from the first.

A key implication of our characterization is the analysis of the relative likelihood of pure
and mixed approximate equilibria.

Corollary 2. If z is a mixed ν-robust state and z′ is a pure ν-robust state, and N is large
enough that rz′ > 1, then µεz

µε
z′
→ 0 as ε→ 0.

Proof. Since rz′ increases linearly with N by Lemma 8, choose N so that rz′ > 1. From
Lemma 9 it follows rz = 1. Then εrz′−rz → 0 as ε→ 0.

Thus for large populations of interacting agents we can conclude that in games with
pure equilibria the stochastically stable states must be pure ν-robust, and hence the pure
equilibria will be selected over mixed ones in the long run. Applying Theorem 8 of Levine
and Modica (2016) we can also conclude that the system will spend on average more time
in the part of the basin of the stochastically stable pure Nash equilibrium that excludes the
equilibrium itself than it will at any non-stochastically stable Nash equilibrium. To see this,
suppose that there exists a pure ν-robust state z. Note that moving from z to a state where
one agent is discontent has resistance 1. During the period of time at the ν-robust state
z before reaching another ν-robust state z′, the ratio of time spent with one agent being
discontent to the ν-robust state z is roughly ε as there is zero resistance from one discontent
agent to z and with large population N the radius of z is larger than 1 so the bounds in
Theorem 8 of Levine and Modica (2016) are tight. Consider another ν-robust state z′ with
smaller radius rz′ < rz, the ratio of time spent at z′ to the other stochastically stable state z
is approximately εrz−rz′ which is much smaller than ε since again with large population the
difference in radii is considerably larger than 1.
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6 High Information Social Learning

Our low information learning procedure focused on agents that have very limited cross-
section social information and very limited memory. Despite these limitations, we found that
learning leads agents to Nash equilibrium and provides an equilibrium selection result. We
now consider the high information model where agents both observe and remember more. In
particular, we are interested in the interplay between cross-section social information about
behavior and memory, and how it affects the learning dynamics.

6.1 The Learning Procedure

For ease of exposition, we present the high information model by describing only the modi-
fications we make to the low information learning procedure. Regarding cross-section social
information, now we assume that in every period t learners observe the joint frequency of
utilities and actions played in their own population16

Υj(αt)[u
j, aj] =

α
j
t (a

j
it) for ajit ∈ Aj(uj, α−jt ),

0 for ajit /∈ Aj(uj, α−jt ).

Concerning recall, we now assume that at the beginning of a period learners can recall
which actions were ν-best responses during the last finite T ≥ 1 periods, and that all learners
recall the last action they played, not only those who are content.17 In this model, an agent’s
type is θjt ∈ Θj

T ≡ (Aj×{0, 1}×TAj)∪Ξj. There is a given initial type distribution. We first
describe the learners’ type Aj ×{0, 1}× TAj . We use 0 to indicate the learner is discontent,
and 1 to indicate the learner is content.18 Thus, Aj × {0, 1} gives the previous action taken
ajit−1 for both content and discontent learners. The final part characterizing the learner’s
type T jit[aj] is the amount of time since each action aj was observed to be a ν-best response to
α−jt−1: T

j
it[a

j] = 0 if aj was a ν-best response to α−jt−1, otherwise T
j
it[a

j] = min{T, T jit−1[aj]+1}.
Since this is the same for all learners of player j we refer to this as the common memory
of player j and the actions aj for which T jit[a

j] < T as the players’ common memory set,
which we denote by Aj

T . Let T be the memory length. This simplifies the description of the
aggregate state of the resulting system since we can use a single memory that is relevant for
all learners of a player.19 The individual memory set of learner i of player j is the common

16Recall that Aj(uj , α−jt ) ⊆ Aj is the possibly empty subset of actions ajit for which u
j
i (a

j
it, α

−j
t ) = uj .

17Note that actions that are best responses are those with the highest utilities since agents observe the
payoff to each possible action given the presence of committed types.

18Despite this modification the transition rules concerning contentment do not change.
19We think of this common memory set as the amount of public information available to each population.

As we discussed the bounded memory assumption is motivated by the limitation of record-keeping devices:
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memory set and the last action that agent played, that is, Aj
i = Aj

T ∪ {a
j
it−1}.

The impact of the memory set is only on the behavior of discontent learners. We assume
they play uniformly only over their individual memory set Aj

i rather than over all actions
Aj. Even though the behavior of the learners in this model can depend on their memory, we
will use the same definition of a ν-robust state: It is a state where each learner is content
and playing a ν-best response to the aggregate play of the other population. Therefore, the
pure ν-robust states will still be the pure strategy Nash equilibria, and the mixed ones will
correspond to a mixed approximate equilibrium.

Notice that our procedure differs from the formulation of Young (1993) where in every
period only one agent per player role moves at that period and takes a size K random sample
of play from the last T periods without replacement. Given this sample, certain actions are
best responses, and only those have positive probability of being played. In contrast, our
model allows agents to choose actions from the last T periods that were ν-best responses in
the period they were used based on that period’s cross-section information. Our model also
differs from Young (1993; 1998), Hurkens (1995), Oyama et al. (2015) and related papers in
that in our model agents do not take random samples.

6.2 Equivalence between T = 1 and the Best Response Dynamics

In this subsection we restrict attention to the case at T = 1 and ν = 0. The latter implies that
learners choose exact best responses. Here Assumption 1 implies that for each population j
there is a single action aj with T jit[aj] = 0 and all the other actions ãj 6= aj have T jit[ãj] = 1:
all actions except the best responses to the previous period’s opposing population play are
forgotten. Because T = 1, discontent learners randomize over their last period action and
the current best response. This is similar to the two-population version of the best-response-
plus-mutation dynamic in Kandori et al. (1993). The specific version of their model we
focus on is called best-response with inertia (see Samuelson (1994)): It assumes that in each
period with probability 1 > λ > 0 each agent independently continues to play the same
action as in the previous period, with probability 1− λ− ε they play a best response to the
population distribution of opponent’s actions, and with probability ε they choose randomly
over all possible actions. While in the one population case the assumption that λ > 0 plays
little role, as Kandori et al. (1993) show by example, it can lead to better behaved and
more sensible dynamics in the two population case with results similar to those with one

borrower’s credit history is limited, insurance companies only have access to the most recent driving records
that are cleared after a certain number of years; and in informal markets information is usually transmitted
through word of mouth that naturally fades away.

19



population.20

In order to make this comparison formally, we must extend the state space to incorporate
the current population play. Let Φj

t ∈ ∆N(Θj
T ×A−j) be a vector of population shares of the

player j types in period t, which includes the play of the opposing population α−jt−1 in period
t− 1. Both our dynamic and the best-response with inertia dynamic are Markov processes
on this extended state space. For compatibility with past work we assume here (only) that
#Ξj = 0 for each population, that is there are no committed agents, but rather that learners
directly observe which actions are best responses. Since we assume that N/M is large this
is a reasonable approximation.

We now show that when T = 1, ν = 0, the high information social learning and best
response with inertia dynamic have the same recurrent classes and same resistance transitions
from one recurrent class to another, which in turn implies that the stochastically stable set
and (for ε > 0) the ergodic probabilities of the recurrent classes are the same. In particular,
from Lemma B5 in Online Appendix B.4 (see also Samuelson (1994)), we know that only
Nash equilibria are stochastically stable for acyclic games and T = 1.21

Theorem 4. High information social learning with T = 1 is equivalent to best response with
inertia in the sense that they have the same recurrent classes and the same least resistance
between any pair of such classes.

Proof. Define z to be equivalent to z′ if they have the same action distribution, and consider
the equivalence classes {z}. In the best response with inertia dynamic the non-action part of
the state (subtypes and common memory sets) never changes so, given the initial condition,
there is a unique point in each {z} that will ever occur. This in turn implies that, along
the least resistance path from that unique point in {zt} to the unique point in {zt+1}, the
least resistance is given by taking all the actions that are not best responses to α−jt−1 and the
increase in the number of agents playing those actions by j summed for j = 1, 2. In high
information social learning with T = 1 dynamic regardless of the starting point in {zt} the
least resistance over all targets in {zt+1} is exactly the same since agents that are not playing
a best response to α−jt−1 must have trembled: content and discontent agents play the unique
best response to α−jt−1. Hence if we have a recurrent class with respect to best response with
inertia dynamics, a subset of the equivalence classes of states in that recurrent class are a
recurrent class with respect to high information social learning with T = 1 dynamics, and
the least resistance between recurrent classes is the same for both dynamics.

20In the study of Markov chains this sort of inertia is called “laziness,” and is used to turn periodic
irreducible chains into aperiodic ones; it serves the same purpose here by ruling out limit cycles.

21Samuelson (1994) does not provide a proof of this so we give one for completeness.
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6.3 Learning Dynamics with T Limited Memory

We next consider special classes of games in which the stochastic stability of Nash equilibria
depends on the memory length. As the amount of memory increases, we can show stochastic
stability of Nash equilibria under less restrictive conditions on the game, and if memory is
long enough we obtain stochastic stability for generic games.

Given the learners’ memory set, it is convenient to define a block to be any set W =

W 1 × W 2 with non-empty subsets of actions W j ⊆ Aj for j = 1, 2 and the associated
block game GW to be the original game G restricting payoffs and actions to the block W . A
blockW is curb (“closed under rational behavior”) if arg maxaj∈Aj u

j(aj, α−j) ⊆ W j for every
action profile α ∈ ∆(A), where αj(aj) = 0 for aj /∈ W j, and every player j (Basu and Weibull
(1991)). That is, a set of action profiles is curb if it contains all best responses to itself. A
curb block is minimal if it contains no smaller curb block. Define a best response path to be
a sequence of action profiles (a1, a2, . . . , at) ∈ (A1 × A2)t in which for each successive pair
of action profiles (ak, ak+1) only one player changes action, and each time the player who
changes chooses a best response to the action the opponent played in the previous period.
We now develop a notion of acyclicity in the spirit of Young (1993), but for movement to
curb blocks.

Definition 2. A game G is k× l acyclic if, for every action profile a ∈ A, there exists a best
response path starting at a and leading to a curb block W , with #W 1 = k and #W 2 = l.

Notice that every game is #A1 ×#A2 acyclic since the entire game is a curb block and
that any 1 × 1 acyclic game is acyclic (Young (1993)). The following game is 2 × 2 acyclic
but is not acyclic:22

H T U D
H 2,0 0,2 0,0 0,0
T 0,2 2,0 0,0 0,0
U 0,0 0,0 5,5 8,2
D 0,0 0,0 9,1 2,8

A more general class of k× l acyclic games that includes this example consists of #A1×
#A2 games, where #A1 = n × k and #A2 = m × l, with k × l blocks along the diagonal
in which payoffs are strictly positive and in each block there is a unique mixed strategy
equilibrium, and all other payoffs are zero. This class is similar to coordination games but
with mixed equilibria on the blocks along the diagonal instead of pure strategy equilibria.

22The game is not acyclic because there are two best response cycles, but is 2× 2 acyclic since from any
action profile either curb block {H,T} × {H,T} or {U,D} × {U,D} can be reached along a best response
path.
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We next show that our learning procedure leads agents to equilibrium if more memory
is combined with our weaker notion of k × l acyclicity; note that as memory grows the
requirement of k×l acyclicity is weakened. If we consider memory length equal to the largest
curb block, we obtain that high information social learning without trembling converges with
probability one to a Nash equilibrium for generic two player games.

Theorem 5. If the game G is k × l acyclic then, with memory length T ≥ k × l and ε = 0,
ν-robust states are absorbing and other states are transient.

Proof. Starting at a ν-robust state z since all learners are playing a ν-best response, all
content learners remain content with their action, so such states are absorbing. We next
prove that from any non ν-robust state there is a zero resistance path to a ν-robust state.

Pick any state zt and suppose it is not ν-robust. Then, there is zero resistance to a
state zt+1 in which all learners of one population, say j, play the same action and are
inactive, while one committed agent in population −j plays the ν-best response a−j to αjt ,
and all learners of population −j are active and those learners that are not playing a ν-best
response become discontent. From zt+1 there is zero resistance to a state zt+2 where learners
of population j are inactive and hold their actions fixed, while all learners of population −j
play the same ν-best response a−j to αjt+1 in the common memory set. We proceed similarly
starting at zt+2 and moving without resistance to zt+3, we assume learners in population −j
hold their play fixed and are inactive, whereas one committed agent in population j plays
the ν-best response aj to α−jt+2, and learners of player j are all active and those not playing
a ν-best response become discontent. Consider the zero resistance transition to state zt+4 in
which learners in population −j play the previous action and are inactive, while learners in
population j all play the same best response aj to a−j in the memory set and are inactive.
The resulting state zt+4 is pure.

Take any pure state zt. Since the game is finite and k× l acyclic, the best response path
from this state goes to a k × l curb block W in a finite number of steps. Notice that in the
following transitions when moving along best response path we use only best responses to
play in the previous period, so it suffices to have T = 1. First, a committed agent in one
population, say j, plays a ν-best response aj to the population play −j, all other learners
play their previous actions and all learners from population j are active so those not playing
aj become discontent. In the next transition, all discontent learners of population j (who
played the ν-best response aj which belongs to the common memory setAj

T ) are inactive. All
learners in population −j play the same actions as in the previous period and are active, and
there is a committed agent in population −j whose committed action a−j is a ν-best response
to the population j play α−j, so the active learners in population −j become discontent. We
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continue until the state is such that population play of learners corresponds to the k× l curb
block.

Start at zt where population play of learners lies in a k × l curb block W , and pick any
Aj
T ⊆ W j for each j with T = k × l. If in each population j all content learners are playing

a ν-best response, and for each j the common memory set Aj
T only contains actions that are

ν-best responses to any feasible α−j(zt), then there is zero resistance to discontents choosing
ajit ∈ Aj

T , all learners being active and becoming or staying content, hence reaching a ν-robust
state. Otherwise, there exists at least one learner in one of the populations that is not playing
a ν-best response to any feasible α−j(zt). Consider the transition where all learners play the
same previous action and in one population j those learners that are not playing a ν-best
response are active and become or stay discontent because they observe a ν-better response
played by some committed agent which implies that #Aj

T increases by 1 and that Aj
T ⊆ W j.

If there are learners in population −j that are not playing a ν-best response, we proceed to
repeat the argument which results in a larger memory set A−jT ⊆ W−j. Eventually, after
k× l steps we have not lost any relevant memory since T = k× l so all learners are discontent
and we have expanded each memory set Aj

T to include all actions in the k × l curb block
W , which contains a ν-Nash equilibrium by definition. From there, there is zero resistance
to a state where all discontents play the action profile corresponding to such equilibrium,
all learners are active and become content; therefore reaching the corresponding ν-robust
state.

The necessity of longer memory for aggregate behavior to approach Nash equilibria in
acyclic games is familiar from stochastic best response dynamics in which agents play best
response to samples from their memory, as in Young (1993); but this is not however sufficient
to ensure convergence to equilibria in generic games. Intuitively, the relationship between
k×l acyclicity and memory length captures that discontent learners randomize among recent
best responses, which leads play to enter a curb block of the appropriate size, which in turn
leads to the result of stability of mixed equilibrium.

The following result shows that the radii of mixed ν-robust states can increase with N
under high information social dynamic, and that the support of those ν-robust states belongs
to a curb block that does not include all equilibria.

Lemma 10. If a curb block does not contain all Nash equilibria then there exists a constant
κ > 0 such that the radius of the set of ν-robust states for which content learners play entirely
within the curb block is at least κN .

In particular this applies to a curb block that does not contain all Nash equilibria but
contains only one completely mixed equilibrium. We can also conclude from this lemma that
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for intermediate values of T the equilibrium selection problem has two levels, first selection
among curb blocks, and then selection within the curb blocks.

Two learning processes that examine stochastically stability of set-valued equilibrium
notions in generic games are related to our high information model with long memory.
Similar to Young (1993), Hurkens (1995) considers a learning model where a single player
in each population is randomly selected to play the game, draws a sample of K observations
with replacement from the set of the last T actions played by the opponent, and plays a
best response to the sample. He shows that when T is large ergodic sets correspond to
minimal curb blocks, and that if the game has a unique strict equilibrium then for large
enough histories the probability that players are playing the equilibrium tends to one. Yet if
the two-player game has multiple minimal curb blocks, trembles will not select a particular
one. Building on this idea, Young (1998) extends Young’s (1993) learning procedure to
generic games. He finds that absorbing states correspond to minimal curb blocks if K/T is
sufficiently small, and that in the limit as ε vanishes stochastically stable minimal curb blocks
are those with minimal stochastic potential. However, the predictive power of such learning
models is limited because minimal curb blocks can be very large (i.e. the full strategy space)
in many games.

7 Examples

In this section, we compare the equilibrium selection of high and low information models in
two examples. We observe that when there are no committed agents, #Ξj = 0 for j = 1, 2,
and agents are able to directly observe the best responses, the computation of the radius and
co-radius with high information model is exactly the same as for best response with inertia.

Example 1. Our first example illustrates that the low information dynamic can select
different equilibria than the high information dynamic with low memory. Consider the game
G1:

A B C D
A 5,5 0,0 0,0 0,0
B 0,0 10,10 0,9 9,0
C 0,0 9,0 10,10 0,9
D 0,0 0,9 9,0 10,10

This game is 1× 1 acyclic (acyclic (Young (1993))), so from Theorem 4 and Lemma B5
the limit invariant distribution for the high information with T = 1 dynamic contains only
singleton pure Nash equilibria. There are four pure strategy equilibria (A,A), (B,B), (C,C)
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and (D,D). Initially we consider ν = 0. We will show that (A,A) has the largest radius, so
it is stochastically stable in the low information model, yet in the high information dynamic
with T = 1 the equilibria (B,B), (C,C) and (D,D) are stochastically stable and have equal
ergodic probability by symmetry.

We start by observing that to escape from (A,A) requires about N/3 of one population
to tremble, say to B, so that is the radius of (A,A). On the other hand to escape from
(B,B), (C,C) or (D,D) requires only about N/11 of one population to tremble, so those
are the radii of (B,B), (C,C) and (D,D). Hence with the low information dynamic, (A,A)

is stochastically stable according to Theorem 2, as it has the largest radius among pure
strategy equilibria. That equilibrium would also be selected under under Young’s dynamics.
To analyze the best response with inertia dynamic, define S to be the union of the three
equilibria (B,B), (C,C), (D,D). The radius rS of S is at least N/2 since if 1/2 of one
population is playing in either of the three equilibria (B,B), (C,C), (D,D) one of those
strategies must earn at least (1/2)(6 + 1/3) while playing (A,A) yields no more than 5/2.
On the other hand, the co-radius of S is approximately N/3 since the maximum distance
between any state and the basin of S is indeed the distance from (A,A) to the basin of S,
because (A,A) is the only pure Nash equilibrium outside of S. Hence by Ellison’s theorem
the radius of S is bigger than the co-radius so S contains all stochastically stable states. In
Online Appendix B.5 we use the results of Levine and Modica (2016) to show that this is
still true when T > 16 and ν > 0.

One of the reasons that the set S is stochastically stable under the best response with
inertia dynamic is that when agents are at the equilibrium (B,B) and enough opponents
switch to strategy C, agents’ behavior gradually adjusts towards (C,C) because they can
see that choosing C is the optimal strategy. Observing other agents’ payoffs, but not their
actions, allows the system to move from (B,B) to (A,A), and once it arrives at (A,A) to
stay there for a long time.23

Example 2. In this example we focus on how the stability of mixed equilibria depends on
information conditions. Consider the game G2:

H T P
H 5,3 3,5 1,1
T 2,5 5,2 1,1
P 1,1 1,1 2,2

This game is 3 × 3 acyclic and has three equilibria: the strict equilibrium (P,P), and
two mixed equilibria ((3

5
H, 2

5
T), (2

5
H, 3

5
T)) and (( 3

19
H, 2

19
T, 14

19
P), ( 2

19
H, 3

19
T, 14

19
P)). Suppose

23In Online Appendix B.5 we illustrate that the low information dynamic can also predict a different
equilibrium even when the best response with inertia dynamic has a singleton stochastically stable set.
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that there is a population of N > 13 agents of which 3 are committed to each action. Let
0 < ν < 1. We first observe that the set of actions profiles for ν-robust states consists of
the state in which learners play (P,P), along with the sets of mixed approximate equilibrium
profiles B and C.24

Lemma 9 shows that ν-robust states which correspond to either B or C move along a
path of resistance 1 to any other ν-robust state. We also know from Lemma 8 that ν-robust
states in which learners play (P,P) may transition to any ν-robust state along a path of
resistance d(N(1 + ν) − 8)/5e. Our characterization of the relative likelihood of different
equilibria (Corollary 2) enables us to conclude that relatively ε1−d(N(1+ν)−8)/5e times as long
is spent at the pure ν-equilibrium as at either mixed ν-equilibrium. Since N > 13 and all
mixed equilibria have a radius of 1, Corollary 2 says that the pure equilibrium is far more
likely than the mixed equilibria in the long run: The fact that the mixed equilibria have
radius one means a single experiment can shift the population away from them, and N > 13

implies that once a pure equilibrium is reached it is relatively likely to stick.
Next consider the predictions of the high information model with memory T = 1. We

denote the block {H,T}×{H,T} by HT . Here we can easily show from the radius co-radius
argument that the block HT contains the stochastically stable set.25 Within this set play
follows a deterministic best response cycle, in particular, each outcome of the block game
GHT

2 will have equal weight in the limit invariant distribution µ. By continuity of µ in λ, the
agents’ time average payoff for small λ is approximately 15/4. Consequently, agents obtain
less than their minmax payoff, which is not a desirable property of a learning procedure
(see, for example, Fudenberg and Kreps (1993), Fudenberg and Levine (1995)). Note that
the game has two minimal curb blocks HT and (P,P) so under the dynamics considered by
Hurkens (1995) and Young (1998) both curb blocks are ergodic sets. Yet Hurkens’s dynamic
does not provide a selection result, and the deterministic best response cycle in the block HT
is the unique stochastically stable set under Young’s dynamic since it has minimal stochastic
potential.

Finally, we consider the high information model with large T > 9. The block HT still
contains the stochastically stable set by radius co-radius argument as well as the equilibrium

24B = {α : |N−1(N−3)(3α̃1(T)−2α̃1(H))+N−1| < ν, |N−1(N−3)(3α̃2(H)−4α̃2(T))+N−1| < ν, α̃j(P) =
0} and C = {α : |N−1(N−3)(3α̃1(T)−2α̃1(H))+N−1| < ν, |N−1(N−3)(2α̃2(H)+4α̃2(T)−α̃2(P))+5N−1| <
ν, |N−1(N − 3)(3α̃2(H)− 4α̃2(T))+N−1| < ν, |N−1(N − 3)(4α̃2(H)+ 2α̃2(T)− α̃2(P))+ 5N−1| < ν}, where
α̃j corresponds to the population play of content agents in j.

25To see this, the radius of the block HT is at least 2N/3 because if 2/3 of one population is playing in
the block HT any of these strategies must earn at least (2/3)(3 + 4/5) while playing (P,P) yields at most
4/3. But, the co-radius of the block HT is about N/5 since at least 1/5 of one population has to mutate to
escape from (P,P), which is the only pure Nash equilibrium outside of the block HT . Since the radius of the
block HT is larger than its co-radius the stochastically stable states are contained in the block HT .

26



((3
5
H, 2

5
T), (2

5
H, 3

5
T)). By Theorem 5 the stochastically stable set is a subset of ν-robust

states in a neighborhood of ((3
5
H, 2

5
T), (2

5
H, 3

5
T)), and therefore the mixed equilibrium would

be selected. Importantly, the limit set does not contain deterministic best response cycles
and agents receive more than the minmax payoff in the long run.

8 Discussion and Extensions

8.1 Committed Agents and Round Robin

We have assumed that there is a small fixed number of committed agents, but enough to
play every action. We have also assumed agents play each other in a round robin rather
than a random matching process. We now discuss the role of these two assumptions and the
consequences of relaxing them.

With respect to committed agents, as argued by Ellison (1994), it is plausible that, in large
populations, some agents fail to learn either because they have limited cognitive capacity
or idiosyncratic preferences. Moreover, as argued by Binmore and Samuelson (1997), one
should not expect all kinds of mistakes to be negligible. Similarly, Sandholm (2012) argues
that if there are agents for whom the environment is of particularly minor importance,
or who are engaged in multiple activities that place great demands on their attention or
reasoning capacities, it seems reasonable to expect that some of these agents may not bother
to consider switching strategies at all. More recently, Heller and Mohlin (2017) emphasize
the importance of introducing committed agents into the study of community enforcement
mechanisms.

With our assumptions on what agents observe, the committed agents act as a “flashlight”
for the learners who are not playing a ν-best response by shining a light on the fact that there
is some other strategy out there that gives a higher payoff. The “flashlight” enables learners
to learn and become discontent when they are not playing a best response. Our results need
this learning to happen substantially more often than learners becoming discontent when
they are playing best responses. If the committed agents played randomly, or all agents had
a probability of experimentation bounded away from zero, this would eventually generate
the necessary information. However, random play also makes payoffs a stochastic function
of the intended play of the other population, which we avoid by having a fixed number of
committed agents who each play a specific action.

In a similar way, if we replaced round robin by some other random matching process,
this would also make payoffs a stochastic function of the intended play of the other popula-
tion. Moreover, random experimentation, random numbers of committed agents, or random
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matching are only some of many possible sources of noise. We examine more carefully the
role of the different types of noise next.

8.2 Noisy Information

We start by focusing on a simple model to analyze different types of noise. In the analysis so
far, there is no error in observing ν-best responses. To study the effect of noisy observation,
we first provide a simplified variation on the original low information model, and we then
modify the simplified model by introducing noisy observation of utility.

In the simplified low-information model, with probability p one single learner of each
population is chosen to be active and matched with one randomly chosen comparison agent
from the same population after the round robin. We now assume that, after being matched
with the comparison agent the active learner has independent probability ε of being discon-
tent. With complementary probability 1 − ε the active learner is content with the current
action if the comparison agent has lower utility, otherwise is discontent.

This model allows the possibility that an active learner who is not currently playing
a best response becomes content without resistance if the comparison agent is playing a
relatively worse action. However, as this probability will be bounded away from 1 due to
the presence of committed agents, there is no cost to staying discontent, so the free to
stay discontent principle still applies. (This follows since one cannot lower the resistance of
the path constructed in the proof of Lemma 5 by having one learner accidentally become
content.) Thus, a learner playing a best response becomes discontent with resistance ε in
both the original model and this variation, so the stochastically stable set does not change.26

We now modify the simplified model to allow noisy observation of the comparison payoffs.
We eliminate the exogenous probability that the active learner becomes discontent. In the
population game we replace the single round-robin tournament withK rounds of round-robin
tournament against the opposing population, still holding fixed the actions of all agents.
We assume that the selected active learners and their comparison agents are held fixed
throughout the K rounds.

We introduce noise by assuming that in each round τ = 1, 2, . . . , K the active learner
i of player j with the comparison agent k observes their own utility uj(ajit, α

−j
t ) and a

noisy signal of the utility of the comparison agent. In this model, we view ν > 0 as the
26Although only one learner can be active at a time in the new model, the number of active learners

plays no role in the original setup. The fact that a learner who becomes discontent plays uniformly at the
beginning of the next period likewise plays no role. Hence while the resistance of paths can be different in
the two models, the resistance of many events defined in terms of collections of states remains unchanged;
particularly, the resistance of the ratios of ergodic probabilities described in Theorem 2 as well as the waiting
times described in Levine and Modica (2016).
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parameter of a perception threshold which is captured by the function ψ. The threshold
function is ψ(uj(aji , α

−j), uj(aji , α
−j), ν) = uj(aji , a

j
k) for |uj(aji , α−j) − uj(a

j
k, α

−j)| < ν, and
ψ(uj(aji , α

−j), uj(ajk, α
−j), ν) = uj(ajk, α

−j) otherwise. That is, the learner cannot distinguish
any utility level that is within ν of their current payoff.27 Then the noisy signal of agent k’s
utility is given by ψ(uj(ajit, α

−j
t ), uj(ajkt, α

−j
t ), ν) + ηjτt. This form of the noise corresponds to

the case where the noise impacts the learner after application of the perception threshold, so
that the probability an agent who is playing ν-best responses gets a false signal of a ν-better
action is independent of just how close to the maximum payoff that agent’s payoff is. As we
explain below, the model is different if the noise is applied to the observation before testing if
it passes the perception threshold, so that the agent’s signal is ψ(uj(ajit, α

−j
t ), uj(ajkt, α

−j
t ) +

ηjτt, ν) (instead of ψ(uj(ajit, α
−j
t ), uj(ajkt, α

−j
t ), ν) + ηjτt).

We assume that the random shocks ηjτt are i.i.d. over time and across actions, indepen-
dent of the payoffs, with zero mean, have support on the entire real line and have a twice
continuously differentiable moment generating function. Moment generating functions are
always log concave; we strengthen this slightly by assuming that the second derivative of the
logarithm of the moment generating function is strictly negative. We also assume that both
populations face the same distribution of payoff shocks.

Finally, the active learners’ type is determined by a modified pairwise comparison: the
active learners compare their own utility with that of the average comparison signal over the
K rounds. That is, for ν > 0 the active learner is discontent if

uj(ajit, α
−j
t ) + ν <

1

K

K∑
τ=1

(
ψ(uj(ajit, α

−j
t ), uj(ajkt, α

−j
t ), ν) + ηjτt

)
,

and is content otherwise. This can be written as

1

K

K∑
τ=1

ηjτt > ν + uj(ajit, α
−j
t )− ψ(uj(ajit, α

−j
t ), uj(ajkt, α

−j
t ), ν),

that is, the active learner is discontent if the observation error is large relative to the perceived
utility difference.

Our interest is in the case where K is large, so the probability of being discontent when
playing a ν-best response is small. To this end, take K = − log ε. We must now determine
the least resistance to a learner who is playing a ν-best response being discontent for each
given configuration. Let L[x] denote the logarithm of the moment generating function of

27There is a large literature in psychology that studies agents that have limited ability to perceive small
differences. In economics the idea of perception thresholds has been explored by, for example, Fishburn and
Trotter (1999), Rayo and Becker (2007), and Salant and Rubinstein (2008).
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ηjτt.28 Assume that learner i is playing a ν-best response and let r(ajit, a
j
kt, α

−j
t ) denote the

resistance of an active learner playing ajit for whom the comparison agent is playing ajkt both
against α−jt to being discontent. The large deviations theorem from probability theory (see
Theorem I.4 of Den Hollander (2008)) shows that

r(ajit, a
j
kt, α

−j
t ) = min

x

[
L[x]−

(
ν + uj(ajit, α

−j
t )− ψ(uj(ajit, α

−j
t ), uj(ajkt, α

−j
t ), ν)

)
x
]
.

Since the learner is playing a ν-best response ν+uj(ajit, α
−j
t )−ψ(uj(ajit, α

−j
t ), uj(ajkt, α

−j
t ), ν) ≥

0 so this resistance is minimized over the comparison agents’ actions when uj(ajit, α
−j
t ) −

uj(ajkt, α
−j
t ) = 0, so that the least resistance to a learner becoming discontent when playing

a ν-best response is minx [L[x]− νx], a positive constant.29

Since which events have zero resistance and which have positive resistance have not
changed, the free to stay discontent principle still applies, and so all equilibria still lie in a
single circuit. Moreover, their relative ergodic resistances are still computed by differences in
the radii between the equilibria. Observe that a constant probability of becoming discontent
gives the same quantitative result as the original model, that is, the radius is computed by
counting the least number of deviations to reach the edge of the basin for each population.
Thus the conclusion of Theorem 3 still applies with the new values of the radii. Here the
radii of mixed equilibria are bounded uniformly in the population size, while the radii of
the pure equilibria is linear in population, so in large populations only pure equilibria are
stochastically stable.

This analysis of noisy payoff observation relies on the assumption that the noise is in-
dependent of the state, so that the resistance to being discontent when playing a ν-best
response is independent of the state as well. There are at least three reasons this might not
be true:

1. The matching may not be exactly a round-robin. For example, with uniform random
matching a learner will receive noisy observations unless all of their opponents play the same
action.30

2. If the number or the play of committed agents is random, the variance of the payoffs
that a learner observes will depend upon the state.

3. If the learner’s perception threshold is random, or if noise impacts the signal before
the threshold test is applied, then learners who obtain payoffs that are farther from the

28Note that in the case of normal errors this function is quadratic.
29Note that the least resistance is positive because of our assumption that ν > 0 but sufficiently small.

If ν = 0 and the observational errors have symmetric distribution around zero then the probability that
observational error exceeds zero is 1/2 so people would be discontent almost all the time.

30For a formal result about when this sampling error has negligible impact on the stochastically stable set
in a related model, see Ellison et al. (2009).
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threshold are more likely to get false signals. In this case the probability of becoming
discontent depends on the distribution of payoffs among ν-best responders in the particular
state.

Our computation of modified radii depends on the circuit structure. The three sorts of
complications above can change the resistances, and noise that breaks ties in the resistances
can change the circuit structure. Nevertheless, the modified radii are robust in the sense
that they are a continuous function of the underlying resistances.31 Thus we expect that our
results will extend if the overall noise from all of these sources is approximately independent
of action and population. As Ellison et al. (2009) pointed out, the order of limits does
matter. For our results to go through we consider first sending the matching procedure
noise, committed agents noise, and threshold effect noise to zero (the rate or order in which
we do this does not matter) then taking the limit as ε (either the probability of trembling or
the analogous measure in the noisy simplified low information model) becomes vanishingly
small. In particular with this order of limits it is still the case that in sufficiently large
populations the pure equilibria are stable and the mixed ones are not. This may not be true
if we take ε→ 0 before one of the other limits.

8.3 Performance of the Learning Rules

We conclude by showing that the learning rules we study do well in environments in which
the system spends most of the time at some approximate Nash equilibrium. Specifically, in
such environments no agent could improve his expected time average payoff by more than ν
by using a different learning procedure, given the play of the other agents. This is true even
when the alternative learning procedures use any amount of information, including knowing
in advance what the agents of the other player are going to do.32

Formally, in a state z agent i’s learning rule gives expected utility Ui(z) that depends
only on z. Given the state z there is a unique probability distribution π−j(z)[α−j] over
α−j ∈ ∆N(A−j). Suppose that action distributions α−j of the opposing population are
drawn from π−j(z), that the agent i observes the outcome α−j and chooses a best response

31To see this we observe that the modified radius of a stable state can also be computed as the resistance
of the least resistance tree for which the root is that stable state: the resistance of a least resistance tree must
be continuous in the underlying resistances regardless of whether the structure of the tree changes when the
underlying resistances change. That is, there is a finite number of trees over which the minimum is taken,
and the resistance of each of those trees is continuous in the underlying resistances, hence the minimum is
continuous as well.

32This is not a “universal consistency property,” (see, e.g., Hannan (1957), Fudenberg and Levine (1995),
and Hart and Mas-Colell (2000)) since it depends on the fact that the other agents are also using the same
learning procedure.
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to it. Let Vi(z) be the corresponding expected utility with respect to π−j(z).33 Let u denote
the largest difference between any two utilities in the game. Taking expectations with respect
to Pε, and letting S denote the stochastically stable set we compute

lim sup
ε→0

lim sup
τ→∞

1

τ
E

τ∑
t=1

(Vi(zt)− Ui(zt)) ≤ ν + (1− µεS)u.

The reason for this is simply that zt is at a ν-robust state except for a fraction of the
time (1−µεS), and when it is at a ν-robust state Ui(zt) cannot do more than ν-worse (for the
learners) than any strategy regardless of how it is learned. Put differently, if the agent knew
that agents of the other population were going to follow a stationary strategy for very long
periods of time τ (where τ depends on ε) and that committed agents in his own population
were going to reveal what the agents of the other population are doing, despite their limited
memory and information, the agent could not do much better than either our low information
learning procedure or our high information learning procedure with large T .

9 Conclusion

In many settings people have aggregate information about the payoffs and/or behaviors of
others, and may use this information to help select their strategies. Most people also have
bounded memory. We have considered two learning models that incorporate these ideas,
showed that aggregate play comes to approximate Nash equilibria, and related the amount
of social information and memory used to which equilibria we should expect to see in the
long run.

In our low information model, agents observe aggregate information about how well others
are doing, but not how they obtained those payoffs, so agents are not able to directly imitate
successful actions. Here we assume that agents use their limited memory to remember their
own most recent action and its payoff, together with a “search state” that indicates that there
might be better actions to experiment with. We demonstrated that pure strategy equilibria
should be expected to be seen a larger fraction of the time than mixed strategy equilibria
when people cannot easily see which actions did well. We then used several examples to
compare the predictions of our learning model to those of the best response with inertia
dynamic.

Our high information social learning model supposes that people observe aggregate infor-
mation about how well and what others did, which might describe some sorts of consumption
and financial decisions, and that when people experiment they use actions that performed

33No learning rule using any information can do better than this.
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well recently. When people recall only the last action and approximate best responses, we
found that our learning dynamic predicts the same stochastically stable states as best re-
sponse with inertia, and so can be trapped in cycles in the long run. When agents have more
memory, cycles become improbable, and mixed strategy equilibria can be relatively more
stable than pure strategy equilibria.

If we think of greater information and greater memory as corresponding to greater so-
phistication, we can summarize our results in the following way: In a game with both mixed
and pure equilibria low sophistication leads to pure equilibria, while high sophistication can
lead to either pure or mixed equilibrium depending on the game. Intermediate degrees of
sophistication may not lead to any equilibrium at all.

Which of these models is a better description for how people learn to play Nash equilibria
will of course depend on the information available to the agents and to the cognitive effort
they put into processing it. Neither one should be expected to apply literally to a wide
spectrum of situations, but we hope they will provide a useful complement to the widely-
used best response dynamic in making predictions about long run social outcomes. We
believe that it would be interesting to explore our learning models in controlled laboratory
experiments because our results establish sharp predictions depending on observability and
memory.
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A Appendix

A.1 Description of the Aggregate State Process

The Markov process describes the evolution of the states z which correspond to population
shares of types. This aggregate-level process is generated by a micro-level process that
describes the evolution of the agent states which correspond to the types of individual agents.
Define the (finite) agent state x = (x1, x2) ∈ (Θ1)N × (Θ2)N to be an assignment of types to
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agents. An agent state x induces population shares of player types (Φ1,Φ2); it is consistent
with a state z if the shares match those in z, in which case we write x ∈ X(z).

To determine the aggregate transition probability Pε(zt+1|zt) from zt to zt+1 start by
choosing an agent state xt ∈ X(zt). For any xt+1 ∈ X(zt+1) we define the agent-state tran-
sition probability Pε(xt+1|xt), and we then compute Pε(zt+1|zt) ≡

∑
xt+1∈X(zt+1) Pε(xt+1|xt).34

Let Dj(xt) be the number of discontent learners of population j in xt, and let C(xt) be the
set of content learners in xt. Let T j denote the trembling learners of player j and let N j be
the non-trembling learners. Let Rj ⊆ N j be the active learners. Denote an assignment of
actions to all agents by σj ∈ (Aj)N .

Lemma A1. The aggregate transition probabilities are given by

Pε(zt+1|zt) =
∑

xt+1∈X(zt+1)

∑
T ,σ,R

∏
j=1,2

ε#T
j

(1− ε)#N j
(

1

#Aj

)#(T j∩C(xt))+Dj(xt)

p#Rj(1− p)#N j−#Rj

︸ ︷︷ ︸
≡P (T ,σ,R,xt+1|xt)

,

if σj is feasible with respect to T j and xt, that is, if it is consistent with the play of the
non-trembling content and committed types, and if xt+1 ∈ X(zt+1); otherwise Pε(zt+1|zt) = 0.

Proof. The determination of Pε(xt+1|xt) has several steps involving interim variables. The
probability of a given set of tremblers and non-tremblers is ε#T j(1 − ε)#N j . Choose any
σj ∈ (Aj)N . Such an action assignment has probability defined as Γj(xt, T j)[σj] that is
calculated below. Given σj and the corresponding αt, we compute the frequency of payoffs
φj(αt). For the non-tremblers N j and each subset Rj ⊆ N j of active non-tremblers, there
is probability p#Rj(1− p)#N j−#Rj that this subset of learners is active.

Now we use these interim variables to compute the transition probabilities. If i /∈ Rj

then θjit+1 = θjit. If i ∈ Rj and uji (a
j
it, α

−j
t ) > uj(φj(αt)) − ν then θjit+1 = ajit, otherwise

θjit+1 = 0. We also compute feasible strategy profiles conditional on T j. Let αj(xt, T j) ∈
∆#Ξj+#(N j∩C(xt))(Aj) be the strategy profile corresponding to the play of the committed and
non-trembling content types in xt.35 A strategy profile αj ∈ ∆N(Aj) in xt is feasible with
respect to T j if Nαj = (#Ξj + #(N j ∩ C(xt)))αj(xt, T j) + (Dj(xt) + #(T j ∩ C(xt)))α̃j for
some strategy profile α̃j ∈ ∆Dj(xt)+#(T j∩C(xt))(Aj).36 In particular, let αj(zt) ≡ αj(xt, ∅) be
the strategy profile corresponding to the aggregate play of content and committed agents in
state zt which is well-defined since αj(xt, ∅) is independent of xt ∈ X(zt), and define Aj(zt)

34This is well defined since while Pε(xt+1|xt) depends on which xt ∈ X(zt) is chosen the sum does not. If
we permute the names in xt and the names in xt+1 the same way then the agent-state transition probability
is unchanged.

35Where the non-trembling content agents play the action corresponding to their type and the committed
types play their committed action.

36That is, if it is consistent with the play of the non-trembling content and committed types.
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to be the set of all corresponding feasible αj. Finally, let T = (T 1, T 2), R = (R1,R2) and
σ = (σ1, σ2).

We compute the joint conditional probability P (T , σ,R, xt+1|xt) of the terminal agent
state xt+1 and the interim variables T , σ,R considering two sets of events. In the first case,
if σj is not feasible given T j and xt, or if xt+1 /∈ X(zt+1) this probability is zero. Observe
that the non-trembling content learners play the last period action and all other learners
play uniformly; this implies that Γj(xt, T j)[σj] = (1/#Aj)D

j(xt)+#(T j∩C(xt)). Then for the
other case, the probability is given by

P (T , σ,R, xt+1|xt) =
∏
j=1,2

ε#T
j

(1− ε)#N j
(

1

#Aj

)Dj(xt)+#(T j∩C(xt))

p#Rj(1− p)#N j−#Rj .

Now we can compute Pε(xt+1|xt) =
∑
T ,σ,R P (T , σ,R, xt+1|xt).

Next we formally show that an active learner who is doing well will never get a signal that
suggests he is doing poorly, so these learners only become discontent when they tremble.

Lemma A2. If σj is feasible with respect to T j and some content learner i ∈ Rj is playing
an ajit which is a ν-best response to α−jt , and θjit+1 6= ajit in xt+1, then P (T , σ,R, xt+1|xt) ≤ ε.

Proof. Since i ∈ Rj is content and playing a ν-best response to α−jt it cannot be that
uji (a

j
it, α

−j
t ) ≤ uj(φj(αt)) − ν. Hence learner i must either remain content with ajit or must

have trembled: in the latter case the whole transition has probability at most ε.

A.2 Proofs for Section 5.1

Since Pε(z′|z) is defined as a sum, and the terms in the sum are of the form P (T , σ,R, xt+1|xt),
it is sufficient when analyzing resistance to look for a target xt+1 ∈ X(zt+1) and realizations
T , σ,R for which the probability P (T , σ,R, xt+1|xt) has the least resistance. Denote this
resistance as r(xt, xt+1). For it to be finite σj must be feasible given T j for j = 1, 2, in which
case the resistance is equal to number of trembles, r(xt, xt+1) = #T 1 + #T 2. In particular
to show that the aggregate resistance is zero it is sufficient to find an agent state resistance
for the transition that has resistance zero.

Lemma 4. If z � ẑ and ẑ is ν-robust then there exists a zero resistance path (of length 1)
z from z to ẑ.

Proof. Let xt ∈ X(z) and zt = z. Since z � ẑ and ẑ is ν-robust we have for each j

that Nᾱj(ẑ) = (N − Dj(z))ᾱj(z) + Dj(z)α̃j for some α̃j ∈ ∆Dj(z)(Aj). This implies that
Aj(ẑ) ⊆ Aj(z), hence if αjt ∈ Aj(ẑ) then αjt ∈ Aj(z), and αjt ∈ Aj(ẑ) implies that all
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learners are playing ν-best responses in αjt . Then there is zero resistance to none of the
learners trembling and all learners being active so all become or stay content with ajit. The
resulting agent state xt+1 therefore satisfies xt+1 ∈ X(ẑ) and by construction the resistance
of this transition is 0.

The next lemma will be used in the proof of Lemma 5.

Lemma A3. If z = (z0, z1, . . . , zt) is a path then there exists a path z̃ = (z̃0, z̃1, . . . , z̃t̃)

with z̃0 = z0 and z̃t̃ = zt with r(z̃) ≤ r(z), and agent states x̃τ ∈ X(z̃τ ) for τ = 0, 1, . . . , t̃

that have transitions between x̃τ−1 and x̃τ in which no discontent learner trembles and every
content learner, including those who tremble, plays the action with which they are content.

Proof. First observe that we can replace the discontent learners who tremble with discontent
learners who play the same way and who are inactive and strictly lower the resistance,
so there is a path to the target with no greater resistance if no discontent learner ever
trembles. To show that we can have every content learner playing the same action, we
replace each transition zτ , zτ+1 with two transitions zτ , z̃2τ+1, zτ+1. Let xτ ∈ X(zτ ) together
with Tτ , στ ,Rτ , xτ+1 ∈ X(zτ+1) have resistance r(zτ , zτ+1). For the transition zτ , z̃2τ+1 choose
the same xτ , set T̃τ = Tτ , and σ̃τ such that all content learners play the remembered action,
σ̃jt is consistent with αj(xτ , ∅), and all learners are inactive. Then r(xτ , x̃2τ+1) = r(xτ , xτ+1)

so that r(zτ , z̃2τ+1) ≤ r(xτ , xτ+1) = r(zτ , zτ+1). For the transition z̃2τ+1, zτ+1 take T̃ j2τ+1 = ∅,
σ̃2τ+1 = στ and R̃2τ+1 = Rτ so that the terminal state is xτ+1 ∈ X(zτ+1) and r(x̃2τ+1, xτ+1) =

0 implying r(z̃2τ+1, zτ+1) = 0 and concluding that r(zτ , z̃2τ+1) + r(z̃2τ+1, zτ+1) ≤ r(zτ , zτ+1).

Lemma 5. For any path z = (z0, z1, . . . , zt) starting at any z0 then there is a path z̃ =

(z̃0, z̃1, . . . , z̃t̃) with z̃0 = z0 and r(z̃) ≤ r(z) satisfying the property that z̃τ � z̃τ−1 and z̃t̃ � zt

for all 1 ≤ τ ≤ t.

Proof. If r(z) =∞, for any x̃0 ∈ X(z0) and any t̃ = 1, take x̃1 to have all learners discontent
Dj(z̃τ ) = N−#Ξj for both j and note that r(z̃) <∞ since we may have all learners tremble.
It follows that z̃1 � z̃0, zt.

Next, suppose that r(z) < ∞. We may assume from Lemma A3 that in z the least
resistance transitions have agent transitions in which no discontent learner trembles and
every content learner plays the action they recall. We will now find a path with t̃ = t and
prove that if z̃τ � zτ we can find a state satisfying z̃τ � zτ , z̃τ−1 and r(z̃τ , z̃τ+1) ≤ r(zτ , zτ+1).
To do this, use the fact that z̃τ � zτ to order the learners of each player j so that the
first N − Dj(z̃τ ) − #Ξj agents in x̃τ ∈ X(z̃τ ) have exactly the same type as the first N −
Dj(z̃τ )−#Ξj learners in xτ ∈ X(zτ ). Observe that r(zτ , zτ+1) is determined by a particular
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target xτ+1 ∈ X(zτ+1) and realizations Tτ , στ ,Rτ , and that r(zτ , zτ+1) = #T 1
τ + #T 2

τ since
στ is feasible as we have assumed a finite resistance path. Denote by Aj(z) the set of
feasible αj ∈ ∆N(Aj) such that Nαj = (N −Dj(z))ᾱj(z) +Dj(z)α̃j for some action profile
α̃j ∈ ∆Dj(z)(Aj). Because z̃τ � zτ we have Aj(zτ ) ⊆ Aj(z̃τ ) and the realization στ is feasible
for x̃τ so we set σ̃τ = στ . We also define R̃τ to be Rτ applied only to those learners who are
content in x̃τ , that is, discontent learners are inactive, but content learners are active if and
only if the corresponding learner did in Rτ . Now let T̃τ be Tτ applied to those learners who
are content in x̃τ . Given σ̃τ , T̃τ and R̃τ , take x̃τ+1 ∈ X(z̃τ+1) to be the corresponding agent
state. Then r(z̃τ , z̃τ+1) = #T̃ 1

τ + #T̃ 2
τ ≤ #T 1

τ + #T 2
τ = r(zτ , zτ+1) since Tτ applies to every

learner to which T̃τ applied. By construction no learner is content in x̃τ+1 unless she has the
same type as in x̃τ so certainly z̃τ+1 � z̃τ . Also by construction every learner who is content
in x̃τ+1 has the same type as the corresponding learner in xτ+1 so indeed z̃τ+1 � zτ .

Lemma 6. (1) If z is totally discontent there is a zero resistance path to every ν-robust
state.

(2) If z is proto ν-robust but not totally discontent, there is a zero resistance path to a
ν-robust state ẑ; and if z is standard we can choose ẑ so that w(z) ≥ w(ẑ).

(3) If z is not proto ν-robust there exists a zero resistance path to a state z̃ with w(z) >

w(z̃).

Proof. Suppose zt = z is totally discontent and ẑ is ν-robust. Take xt ∈ X(z) and action
assignment σt in which αjt ∈ Aj(ẑ). This is feasible since Aj(ẑ) ⊆ Aj(z) for j = 1, 2. Suppose
next that the transition does not involve any learner trembling and has all learners being
active. Since ẑ is ν-robust the learners are all playing a ν-best response and hence have zero
resistance to becoming content. The resulting state xt+1 ∈ X(ẑ), so the process reaches ẑ
with zero resistance and showing part (1).

Now consider a proto ν-robust state zt = z that is not totally discontent with w(z) > 0.
Let population j have at least one content learner so wj(z) ≥ 1. Since z is proto ν-robust
and wj(z) ≥ 1, one content learner in j plays an action âj that is a ν-best response to
α−j(z). Take any xt ∈ X(z), and consider the following zero resistance transition to z′: In
population j, learners do not tremble and are active, content learners play the last period
action, and discontent learners play the action âj; in population −j learners do not tremble,
play the same actions as the previous period, and are inactive. For the next transition, we
consider two cases. Suppose first that there is no content learner in population −j, that is
w−j(z)= w−j(z′) = 0. By Lemma 2, there is a M/N such that â−j is a strict best response
to αj(z′) with αj(âj) > 1 −M/N . Along the transition from z′ to ẑ suppose in population
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j nobody trembles and all learners are inactive, while in population −j all learners do not
tremble, discontent learners play â−j and are active. In the resulting state ẑ all learners are
content and playing a ν-best response, and w(ẑ) > w(z). If instead w−j(z) = w−j(z′) = 1

the content learner in −j is playing the ν-best response â−j to αj(z′). Then, in the transition
from z′ to ẑ assume learners in population j do not tremble and are inactive, and all learners
in population −j do not tremble, discontent learners play â−j and are active. The resulting
state ẑ is ν-robust with w(z) ≥ w(ẑ). By construction, unless z was semi-discontent, we did
not increase the width which is claimed in part (2).

Finally, to show part (3) suppose that zt = z is not proto ν-robust with w(z) > 0. Then
in at least one population j there is at least one content learner with aji that is not a ν-best
response to some α−j ∈ A−j(z). Pick any xt ∈ X(z). There is zero resistance to having
population −j play α−j if no learner trembles, all learners are inactive and discontent learners
play the same action, it does not also add resistance to this transition if one committed agent
of player j plays a ν-better response than aj and play of population j corresponds to some
αj ∈ Aj(z). Moreover, there is zero resistance when all learners of player j do not tremble so
the learners in state aj become discontent. Then xt+1 ∈ X(zt+1) with w(zt+1) < w(z).

A.3 Proofs for Section 5.5

Lemma 8. The radius of a pure ν-robust state z is rz = min{r1
z, r

2
z}, and if z is a ν-robust

state there is a path from z to z with resistance equal to rz.

Proof. Let z be a least resistance path from a pure ν-robust state z to any ν-robust state z.
Lemma 5 implies there is a path z̃ = (z̃0, z̃1, . . . , z̃t) from z̃0 = z with r(z̃) ≤ r(z). Moreover,
since z̃t � z and z is ν-robust there is a zero resistance path from z̃t to z by Lemma 4. Hence
the radius of z may be computed as the resistance of z̃. Let aj, a−j be the profile of content
actions corresponding to z.

Suppose for player j rj ≤ r1
z + r2

z and rj ≤ r−j. It suffices to consider the case where
Dj(z̃τ ) < r−j and rj < D−j(z̃τ ) < rj. In population −j content learners are playing a
ν-best response while discontent learners need not be. Consider the transition in which
no learner trembles, discontent learners play a−j and are active. This transition has no
resistance. If discontent learners in population j do not play a ν-best response, are active
and no learner trembles; we reach this transition with zero resistance. In the former case,
since z̃τ � z̃τ−1, zτ for all τ the number of discontent learners in population j can be increased
only if Dj(z̃τ ) < r−j increases, and since r−j ≥ 1 this requires at least one content learner
that is playing a ν-best response to become discontent so this transition has resistance at least
one by Lemma A2. This characterizes the basin of z. Next, we show that as long as we leave
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the basin we can reach any other ν-robust state. Assume D−j(z̃τ ) ≥ rjz, then player j content
learners are not playing a ν-best response to some feasible profile of actions α−j ∈ A−j(z̃τ ).
Let them be active, and no learners tremble. This transition has no resistance. In the
following state, suppose that all the discontent learners in j induce a feasible action so that
content learners in −j are not playing a ν-best response. Then discontent learners in j and
−j are inactive, content learners in −j are active and observe that they are not playing
ν-best response and there are no trembles. This zero resistance transition results in a state
where all learners are discontent. By Lemma 6 part (1) there is a zero resistance path to
any ν-robust state.

Lemma 9. If a ν-robust state z has w(z) > 2, its radius is rz = 1, and there is either a
path with resistance 1 to every ν-robust state z or to a ν-robust state z̃ with w(z̃) ≤ w(z)

and either w(z̃) < w(z) or h(z̃) > h(z).

Proof. By Lemma 6 it suffices to consider paths z from z to any proto ν-robust state z′. Be-
cause z is ν-robust, all learners are content and play a ν-best response. Hence any transition
from z to some other proto ν-robust state ẑ has r(z, ẑ) ≥ 1, since by Lemma A2 at least one
content learner that is playing a ν-best response must tremble for the system to leave z. We
apply the following algorithm to construct least resistance paths between ν-robust states. In
z, identify an action ãj for one player j that is played by the largest number of learners in
supp(αj(z)). Suppose that in the transition from z to z′ one content player j agent in state
aj ∈ Aj trembles and become discontent, while all the other content agents are inactive and
do not tremble. This implies that r(z, z′′) = 1, and w(z′′) ≤ w(z) by construction. If z′′ is
proto ν-robust , consider the transition from z′′ to z′′′ where the unique discontent learner
plays the action ãj 6= aj (notice that ãj ∈ supp(αj(z′′))), is inactive, and does not tremble,
while the rest of the learners do not tremble and are inactive. Thus z′′′ is ν-robust and
h(z′′′) > h(z). Otherwise, z′′ is not proto ν-robust, so there is a zero resistance path z from
z′′ to a state z̃ with w(z̃) < w(z′′) by Lemma 6. If z̃ is a proto ν-robust state we are done. If
z̃ is not a proto ν-robust state we proceed as in the last step, applying repeatedly Lemma 6,
we construct a zero resistance path z′ from z′0 = z̃ to other state z′t = z with w(zτ+1) < w(zτ )

for t ≥ τ ≥ 0 until we reach a proto ν-robust state z (which could be totally discontent or
not). By Lemma 6, from a totally discontent state we can reach any ν-robust state.

A.4 Proof of Lemma 10

Lemma 10. If a curb block does not contain all Nash equilibria then there exists a constant
κ > 0 such that the radius of the set of ν-robust states for which content learners play entirely
within the curb block is at least κN .
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Proof. Assume there is a curb block W that does not contain all Nash equilibria, and that
there is a set of ν-robust states S where the support of the action profiles corresponding to
content learners lies entirely on W . For S, define κjS to be the least fraction of learners from
population −j that must play a−j ∈ A−j \W−j so that there is a learner in population j

that is not using a ν-best response. Let κS = min{κ1
S, κ

2
S}. Note that κ > 0 as at least one

Nash equilibrium is not in W , and let ẑ be any ν-robust state not in S. Any z′ such that for
either population Dj(z′) < κN belongs to the basin of S since the system returns to S with
probability 1. This is because Aj

T ⊆ W j for both j which in turn implies that discontent
learners eventually choose a ν-best response, and when active become content, returning to
S. Also, any transition from z′ to ẑ requires at least one content learner to tremble from at
least one population j for a ν-best response a−j corresponding to ẑ to be part of A−jT .

B Online Appendix

B.1 Proofs for Section 4

Lemma 1. If ν > 0, there is an η such that, if N/M > η, a ν-robust state exists.

Proof. Since the game is finite it has a mixed strategy Nash equilibrium, and for any ν > 0

and any such Nash equilibrium α̂ ∈ ∆(A), there is an open neighborhood U of α̂ in which
every element is a ν/2 equilibrium. For N sufficiently large there is a grid point α ∈ ∆N(A)

in U , and consequently for large enough N/M if the learners are content with this grid point
it is ν-robust. We may choose N/M large enough that the behavior of the committed agents
does not move the grid point outside of U .

Lemma 2. There is a η such that if N/M > η and aj is a strict best response to a
pure strategy a−j ∈ A−j, then aj is a strict best response to all α−j ∈ ∆N(A−j) satisfy-
ing α−j(a−j) > 1 −M/N . In particular, if aj is the only ν-best response to a−j ∈ A−j and
ν < g then it is a strict best response to a−j, so the same conclusion obtains.

Proof. The hypothesis ν < g implies that ν-best responses are strict best responses,37 and
for each pure opponent’s action a−j for which some aj is the (unique) strict best response,
there is a γ ≥ 0 such that aj is also a best response to any mixed strategy α−j ∈ ∆N(A−j)

such that α−j(a−j) ≥ 1 − γ. Because A−j is finite, there is a γ such that for all γ ∈ (0, γ)

the previous conclusion holds for all such best responses aj, which proves the statement.
37Note that this is true even for ν = 0.
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Lemma 3. In any 0-robust state, the action profile of the learners must be a pure strategy
Nash equilibrium, and any pure strategy Nash equilibrium corresponds to the play of learners
in a 0-robust state.

Proof. If z is 0-robust all learners are content and are playing a best response to the unique
α−j(z) ∈ Aj. By Assumption 1, content learners in each population j must be playing the
same best response âj and so z is pure. At z then αj(âj) > 1 −M/N for each j, so âj is a
strict best response to â−j and so â is a pure strategy Nash equilibrium. Conversely, suppose
that â is a pure equilibrium, and that all learners in each population j are playing âj and
are content. Since â is strict, by Lemma 2, there is a N/M sufficiently large such that for
each j the action âj is a strict best response to any α−j(â−j) > 1−N/M, and for such N/M
there is a 0-robust state for the learners to play â.

B.2 Auxiliary Result for Section 4

The following result was noted in Section 4.

Lemma B4. When ε > 0 the Markov process Pε generated by the low-information model is
irreducible and aperiodic.

Proof. Pick any state ẑ where Dj(ẑ) = N − #Ξj for each population j. Start with any
state zt and take any agent state xt ∈ X(zt). There is probability ε#T

j that all learners
tremble, and #T j = N − #Ξj, so Dj(zt+1) = N − #Ξj for j = 1, 2. Take αjt+1 ∈ Aj(ẑ)

and choose x̂t+1 ∈ X(ẑ) with an action assignment σ̂j consistent with αjt+1. Starting at x̂t+1

there is probability (1/#A1)N−#Ξ1
(1/#A2)N−#Ξ2 that all agents play σ̂. There is probability

(1 − p)2N−#Ξ1−#Ξ2 that all learners are inactive so they all stay discontent, hence entering
ẑ. Next, starting at x̂ ∈ X(ẑ) there is positive probability that no learner trembles and is
active, so that learners all remain discontent. Since starting at any state there is a positive
probability of reaching a single state ẑ where the system may rest for any length of time
with positive probability implies that the system is irreducible and aperiodic.

B.3 Proof of Lemma 7

Lemma 7. There is a χ > 0 and γ > 0 with N/M > γ and ν < χ such that for every pure
ν-robust state z we have for at least one j that rjz ≤ r1

z + r2
z and for both j that rjz ≥ 1.

Proof. For each pure Nash equilibrium â = (âj, â−j) of the game G define ρj
â
(ν) for player j

to be the maximum probability α−j(â−j) such that âj is not the only ν-best response to â−j.
Analogously, let ρjâ(ν) for player j be the supremum probability α−j(â−j) such that âj is not
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a ν-best response to â−j. From Assumption 1 ρj
â
(0) = ρjâ(0) for j = 1, 2, and by Assumption

2 ρjâ(0) > 0 for j = 1, 2. By definition of equilibrium ρj
â
(0) < 1 for j = 1, 2. Then, since

ρj
â
(0) = ρjâ(0) it follows that for j = 1, 2 we have (1− ρjâ(0)) < (1− ρ1

â
(0)) + (1− ρ2

â
(0)) and

ρj
â
(0), ρjâ(0) < 1. Notice that ρj

â
(ν) is continuous at ν = 0 by Assumption 3, and that ρjâ(ν)

is continuous at ν = 0 by Assumption 2 and Assumption 3. Hence for sufficiently small
ν > 0 for each j we still have (1 − ρjâ(ν)) < (1 − ρ1

â
(ν)) + (1 − ρ2

â
(ν)) and ρj

â
(ν), ρjâ(ν) < 1.

Since there are finitely many pure equilibria, we may choose ν so that these conditions are
satisfied at all such equilibria for all ν ≤ ν.

Take any ν ≤ ν. Since (1 − ρjâ(ν)) < (1 − ρ1
â
(ν)) + (1 − ρ2

â
(ν)) and ρj

â
(ν), ρjâ(ν) < 1 it

must be that for sufficiently large N −M we have (N −M)(1− ρjâ(ν)) + 3 < (N −M)[(1−
ρ1
â
(ν)) + (1 − ρ2

â
(ν))]. Denote by dxe (resp. bxc) the smallest (resp. the largest) integer

greater than or equal to x (resp. not larger than x) so that rjz = d(N −M)(1 − ρjâ(ν))e
and rjz = b(N −M)(1− ρj

â
(ν))c. Since there are finitely many equilibria there is therefore a

constant Γ such that for N −M ≥ Γ we have rjz ≤ r1
z + r2

z. Since M ≥ 1 there is a γ such
that for N/M ≥ γ we have N −M ≥ Γ. Since ρjâ(ν) > 0, a similar argument establishes
that rjz ≥ 1 for j = 1, 2.

B.4 Absorbing States with Stochastic Best Response with Inertia

Dynamic

We next provide a proof that in acyclic games with a unique best response to each pure
action of the opponent, the support of the limit invariant distribution for the stochastic
best response dynamic with inertia contains only singleton absorbing sets, i.e. pure Nash
equilibria.

Lemma B5. Every state that does not correspond to a pure strategy Nash equilibrium is
transient under best response with inertia dynamic.

Proof. Fix a time t and suppose that the state does not correspond to a pure strategy
equilibrium. There is positive probability that this period all agents of one player, say j, do
not adjust their play while all agents of the other player −j play the best response to the
date-t state, and that at date t + 1 all agents of j play the best response to the date t + 1

state while all agents of player −j hold their actions fixed. Thus there is positive probability
that play in each population corresponds to a pure strategy from period t + 2 on. Because
the game is finite and acyclic, the best response path from this state converges to a pure
strategy Nash equilibrium in a number of steps no greater than J ≡ #A1 × #A2. There
is positive probability that the populations will take turns adjusting, all of the −j agents
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adjusting in periods t, t+2, t+4, . . ., and all of the j agents adjusting at t+1, t+3, t+5, . . .,
so this equilibrium has probability bounded away from 0 of being reached in 2 + J steps,
showing the initial time t state is transient.

B.5 Analysis of Example 1 (Continued)

We first show that the low information dynamic with T = 1 can also predict a different
equilibrium than best response with inertia even when the best response with inertia dynamic
has a singleton stochastically stable set. Suppose that a player obtains κ > 0 instead of 0

when choosing (B,B) against (C,C). To escape from (B,B) now about N/(11 − κ) of one
population needs to mutate so this is the radius of (B,B). Our dynamic selects (A,A) as
it continues to have the largest radius among pure strategy equilibria. The set S equal to
the union of (B,B), (C,C), (D,D) still contains all stochastically stable states. Let S ′ be
the union of (A,A), (B,B). The radius of S ′ is about N/(11 − κ) of one population since
escaping from S ′ requires this amounts of agents trembling to move to (C,C) or (D,D);
and the co-radius is about N/11. Because the radius of S ′ is larger than its co-radius the
stochastically stable states are in S ′. Combining this with the fact that they also lie in S

shows that the unique stable state is (B,B) although its radius is smaller than the radius of
(A,A).

We next show that when T > 16 and ν > 0 in the high information dynamic the
stochastically stable set consists exactly of the three equilibria (B,B), (C,C) and (D,D).

The block game GBCD
1 has seven Nash equilibria: the pure equilibria (B,B), (C,C)

and (D,D), the binary mixed equilibria ((10
11
C, 1

11
D),(10

11
C, 1

11
D)), ((10

11
B, 1

11
D),(10

11
B, 1

11
D)),

((10
11
B, 1

11
C),(10

11
B, 1

11
C)); and a mixed equilibrium in which players randomize uniformly

across B, C and D.38 Since all ν-robust states of this dynamic do not belong to the same
circuit, we have to analyze circuits of circuits, but first we must establish what the structure
of the circuits is.39

First, the three pure ν-robust states corresponding to the equilibria (B,B), (C,C) and
(D,D) form a circuit since we can move from one of these equilibria to the next with resistance
equal to the common radius of these equilibria, which is about N/11.

The mixed ν-robust states corresponding to a binary mixed equilibrium have a simple
structure. Consider a binary mixed equilibrium. As weight shifts from one of the two actions
for one of the players to the other until we reach an extremal point at which a further shift

38Notice that when analyzing ν-robust states there is a subset of ν-robust states in a neighborhood of each
mixed equilibrium.

39Recall that a circuit is a set of ν-robust states such that for any pair of states z, z′ there exists a least
resistance chain from z to z′.
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causes the other player no longer to be playing a ν-best response for both of his actions.
The structure of these equilibria is that of a square: for each player there is a sequence of
consecutive grid points between the two actions for which the opponent’s two actions are
a ν-best response. The complete collection of mixed ν-robust states corresponding to the
binary mixed equilibrium is then the Cartesian product of these two sets. Each of these
collections form a circuit, but these collections are also in a common circuit with the pure
equilibria that we call the “pure/binary” circuit.40

The structure of the mixed ν-robust states corresponding to the mixed equilibrium over
B, C and D is more complicated, since shifts are no longer one-dimensional for each player.
However, the least resistance from a ν-robust state in the pure/binary circuit to some ν-
robust state corresponding to the completely mixed equilibrium is about N/2.41 Since this
is greater than N/11 none of the ν-robust states corresponding to the completely mixed
equilibrium are in the pure/binary circuit. Moreover, transitions from these mixed ν-robust
states to the pure/binary circuit all have resistance 1.

Finally, (A,A) lies also in a separate circuit. This is because the least resistance from a
ν-robust state in the pure/binary circuit to (A,A) is about N/2.42 Being greater than N/11

implies that (A,A) does not belong to the pure/binary circuit. We can move from (A,A) to
any ν-robust state in the pure/binary circuit with resistance N/3.

We next need to compute the modified resistance of going from one circuit to the next
circuit, which is the least resistance from one circuit to the next circuit minus the least
resistance path out of the circuit. We can then define circuits of circuits, which are collections
of circuits such that for any pair of circuits in the collection we have a route from one to the
other such that at each step the modified resistance of moving from one circuit to the next
is the least resistance of moving from the one circuit to any other.

Although the structure of ν-robust states corresponding to the mixed equilibrium over
B, C, D involves several circuits, note that transitions from the pure/binary circuit to any
circuit containing such ν-robust states have a modified resistance of N/2−N/11.43 Moving
on the other direction requires a modified resistance of no more than 1. Hence from Theorem

40Because they can be reached from the corresponding pure equilibria with resistance equal to about N/11,
while within each collection corresponding to a binary mixed equilibrium there is always a ν-robust state
from which we can move to either of the two pure equilibria in the support of the mixed equilibrium with
resistance one.

41As half of one population may play the remaining action to make it a ν-best response and be in the
memory set.

42Since if 1/2 of one population is playing in the block BCD one of those strategies must earn at least
19/6 while playing (A,A) yields no more than 5/2.

43Transitions from a pure ν-robust state to any ν-robust state corresponding to the mixed equilibrium
over B, C and D have resistance of about N/2 while the radius of such a pure ν-robust state is about N/11.
Moving on the other direction requires a modified resistance of no more than 1.
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10 of Levine and Modica (2016) we know that the stochastically stable set belongs to the
pure/binary circuit, and within that circuit we look for the largest radii: the three pure
equilibria.
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