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Global Convergence?

• “grail” of learning research: global convergence theorem for convincing
learning processes

• easy to construct examples of learning processes that don’t converge

• non-convergence looks like cob-web; people repeat the same
mistakes over and over; not terrifically plausible

• we seem to see much “equilibriumness” around us (traffic example)

• “full Bayes learning” (Kalai-Lehrer) results in convergence to Nash
equilibrium

• Peyton just argued that such learning isn’t really possible

• I’ll try to convince you that “all sensible” learning procedures lead in the
long-run to correlated equilibrium
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• I’ll start by motivating learning processes from an individual
perspective (i.e. processes that “work”)

• I’m only going to talk about pure forecasting (no causality)

“Classical” Case of Fictitious Play

• keep track of frequencies of opponents’ play

• begin with an initial or prior sample

• play a best-response to historical frequencies

• not well defined if there are ties, but for generic payoff/prior there will
be no ties

• optimal procedure against i.i.d. opponents
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• how well does fictitious play do if the i.i.d. assumption is wrong?
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How well can fictitious play do in the long-run?

• notice that fictitious play only keeps track of frequencies: can fictitious
play do as well in the long-run as if those frequencies (but not the
order of the sample) was known in advance? Notice the weakening of
the criterion

• Universal Consistency

let ut
i  be actual utility at time t, let f t

i-  be frequency of opponents’ play
(joint distribution over S i− )

suppose that for all (note that this does not say “for almost all”)
sequences of opponent play
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then the learning procedure is universally consistent

Is fictitious play universally consistent? Fudenberg and Kreps example

0,0 1,1

1,1 0,0

this coordination game is played by two identical players

suppose they use identical deterministic learning procedures

then they play UL or DR and get 0 in every period
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this is not individually rational, let alone universally consistent

Theorem [Monderer, Samet, Sela; Fudenberg, Levine]: fictitious play is
consistent provided the  frequency with which the player switches
strategies goes to zero
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Fictitious Plan in Matching PenniesH
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Smooth Fictitious Play

instead of maximizing u si i
t
i( , )f -1  maximize u vi i

t
i i i( , ) ( )s f l s- +1

where vi  is smooth, concave and has derivatives that are unbounded at
the boundary of the unit simplex

example: the entropy v s si i i i i i

si( ) ( ) log ( )s s s= -Ê
as l � 0 this results in an approximate optimum to the original problem

however the solution to u vi i
t
i i i( , ) ( )s f l s- +1  is smooth and interior

(always puts positive weight on all pure strategies)

Theorem [Blackwell, Hannan, Fudenberg and Levine and others]:
smooth fictitious play is e  universally consistent with e � 0 as l � 0
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Calibration

Notice that pattern recognition is ruled out

Instead, use conditional probabilities; specifically
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Interpetation of Calibration

weather forecasting example: calibrated beliefs, versus calibrated
actions

consequence of universal calibration: global convergence to
the set of correlated equilibria

Foster and Vohra: there are universally calibrated
algorithms
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How to do it?

$ ( )σ φi  smooth fictitious play

suppose you play ~σ i

with probability ~ ( )σ i is  you play si

if you choose si then you “should” play $ ( ( ))σ φi
t

i is−
−

1

so overall, you “should” play ~ ( ) $ ( ( ))σ σ φi i i
t

i i

s
s si −

−∑ 1

a fixed point problem then: ~ ( ) ~ ( ) $ ( ( ))σ σ σ φi i i i i
t

i i

s
s s si= −

−∑ 1
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easy to solve, and indeed the solution is calibrated
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Shapley Example

A M B

A 0,0 0,1 1,0

M 1,0 0,0 0,1

B 0,1 1,0 0,0
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smooth fictitious play (time in logs)

Exponential Fictitious Play
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Learning Conditional on Opponent’s Play
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