Quality Ladders, Competition, Growth and Misallocation

Michele Boldrin and David K. Levine
Democracy and Growth
Limited Experience with Stable Democratic Institutions

- US, UK, Canada, Australia, New Zealand: 100 years ("universal suffrage" 1918-28)
- Western Europe, Japan, India: 70 years

Growth in India versus China, versus catastrophes in India and China

Role of ideology?

Post WWII was particularly bad: ideas such as socialism, central planning, government control of industry, trade protectionism, stimulus spending were fashionable everywhere
Purpose of the Talk

What can endogenous growth theory tell us about:

1. Catch up?
2. Static frictions such as misallocation?
Consumption Sector

utility of the representative consumer

\[U = \int_0^\infty e^{-\rho t} \log c_t \, dt \]

subjective interest rate \(\rho \)

quality ladder:

good of different qualities \(j = 1, 2, \ldots, \infty \), consumption of \(j \) is \(d_j \)

constant increase \(\lambda > 1 \) in quality as we move one step up the ladder

aggregate consumption is \(c_t = \sum_j \lambda^j d_{jt} \)
Grossman-Helpman Production Ladder

- one unit of output of each quality requires one unit of labor to obtain
- first firm to reach step j on the quality ladder achieves a short-term monopoly over that technology.
- monopoly ends with new innovation $j+1$ at which time all firms have access to technology j
- hence limit pricing: price of $j+1$ relative to j is $p = \lambda$
- intensity of R&D for a firm is denoted by \tilde{i},
- probability of next step during a period of length dt is $\tilde{\alpha} dt$ at a cost of $\tilde{i}a_idt$
- endowment: L units of labor
Steady State Research Intensity

\[t = \frac{(1 - 1/\lambda)L}{a_I} - \frac{\rho}{\lambda} \]

socially optimal research intensity

\[t^* = \frac{L}{a_I} - \frac{\rho}{\log \lambda} \]

(Perhaps there are institutions that are more efficient than short-term monopoly)
Boldrin Levine Production Ladder

• consumption is produced both from labor and knowledge capital
• available knowledge capital of type \(j \) is \(k_j \)
• knowledge capital has three uses:

 produce consumption: one unit of knowledge capital and labor per unit of consumption

 generate more knowledge capital

 more of the same quality: at rate \(b > \rho \) (widening)

 higher quality (innovation): conversion rate \(a > \lambda \) (deepening)
Capital Dynamics

capital allocated to three uses: k_j^w, k_j^d, and k_j^c

resource constraint $k_{j,t} = k_{j,t}^w + k_{j,t}^d + k_{j,t}^c$

motion

$$\dot{k}_j = bk_j^w + \frac{k_{j-1}^d}{a} - k_j^d$$

also allow discrete of capital to the next run on the ladder

(i) $a > \lambda$ makes deepening costly

(ii) $b > \rho$ makes widening profitable

• ordinary diminishing return economy satisfying first and second welfare theorems
Steady State Cycle and Research Intensity

alternation between build-up and growth phases

build-up: consumption is constant, only one type of capital used to produce consumption

length \(\tau^b = (\log a - \log \lambda) / (b - \rho) \)

growth phase: consumption grows at constant rate \(b - \rho \), capital shifted from \(j \) to \(j + 1 \)

length \(\tau^g = \log \lambda / (b - \rho) \)

total length of cycle is \(\tau^* = \log a / (b - \rho) \)

research intensity

\[
\frac{1}{\tau^*} = j^* = \frac{b - \rho}{\log a}.
\]
Rationale

• capital prices determined by arbitrage (utility units)
capital gains equals growth rate of capital minus subjective interest rate
so prices must fall at rate $b - \rho$
and over τ^* must fall back to the level of the previous vintage, i.e. must fall by $1/a$

hence: $\tau^* = \log a/(b - \rho)$

• during growth phase consumption growth
standard investment model, grows at rate $b - \rho$
over τ^g must grow by λ

hence: $\tau^g = \log \lambda/(b - \rho)$
DRAM Output
Overview of Models

Grossman Helpman: \[\nu = \frac{(1 - 1/\lambda) L}{a_I} - \frac{\rho}{\lambda}. \]

Grossman Helpman efficient: \[\nu^* = \frac{L}{a_I} - \frac{\rho}{\log \lambda}. \]

Boldrin-Levine: \[j^* = \frac{b - \rho}{\log a}. \]

multiply by \(\log \lambda \) to get growth rate of consumption
Common Features: Endogenous Growth

subjective interest rate ρ: more patience more innovation and growth

cost of innovation a, a_I: more costly less innovation and growth
Neutrality and Non-Neutrality

• in Grossman Helpman (either version) L and λ both increase innovation

L (size of economy) bigger market, cost of innovation spread more widely

[not much evidence for this]

λ bigger greater benefit of innovation

• in Boldrin Levine L and λ are neutral for innovation

[but could modify the model so that λ depends on size of economy]
Playing Catch Up

easier to climb the ladder: smaller a, a_I

in Grossman Helpman no real limit to how fast you can climb

in Boldrin Levine as $a \to \lambda$ length of build-up goes to zero, but length of growth phase does not

research intensity approaches

$$j^* = \frac{b - \rho}{\log \lambda}.$$
Static Misallocation

not obvious how to model this in Grossman Helpman framework

in Boldrin Levine natural to interpret it as smaller value of \(b \)
cannot increase existing capital stock so quickly as so much of it tied up in inefficient operations
Growth of Consumption

\[\frac{\log \lambda}{\log a} (b - \rho) \]

- catchup/research efficiency \(\log \lambda / \log a \)
- misallocation/education \(b \)
- patience/savings/demographics \(\rho \)
Growth, Savings and Demographics

<table>
<thead>
<tr>
<th></th>
<th>Growth</th>
<th>Population</th>
<th>Net Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>6.9%</td>
<td>0.6%</td>
<td>24.8%</td>
</tr>
<tr>
<td>India</td>
<td>3.7%</td>
<td>1.1%</td>
<td>18.1%</td>
</tr>
<tr>
<td>Italy</td>
<td>1.5%</td>
<td>-0.1%</td>
<td>1.9%</td>
</tr>
<tr>
<td>USA</td>
<td>2.3%</td>
<td>0.7%</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

Source: World Bank

Net Savings 2016; Growth and Population 2017