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Introduction

• How to model idiosyncratic risk?
• Standard answers: Incomplete markets; participation constraints
• Why does Bill Gates have such an undiversified portfolio?
• Need to introduce moral hazard
• This was done many years ago by Prescott and Townsend in “lottery

economies”
• Lotteries widely used in applied work with indivisibilities (Hansen,

Rogerson, others)
• Still controversial and not widely used in the analysis of asset markets
• Recent  work by Bennardo, Bennardo & Chiappori
• Connection between sunspots and lotteries in indivisibility case: Shell,

Wright, Garrett and others
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Goals

• A model in which rich face incentive constraints and poor face
participation constraints

• Biased portfolios of rich individuals cannot be explained by incomplete
markets or liquidity constraints

• Lack of insurance for workers against market conditions cannot be
explained by moral hazard or adverse selection

• General equilibrium framework in which there are identifiably different
classes of households, but within a class, there is private information

• Evaluate problem from perspective of demand (response of demand to
prices) in order to incorporate individual as one of many identifiable
types in a GE  model
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A Motivating Example

continuum of traders ex ante identical

two goods j = 1 2, ; cj  consumption of good j

utility is given by ~ ( ) ~ ( )u c u c1 1 2 2+

each household has an independent 50% chance of being in one of two
states, s = 1 2,

endowment of good 1 is state dependent
w w1 12 1( ) ( )> ; endowment of good 2 fixed at w 2.

In the aggregate: after state is realized half of the population has high
endowment half low endowment
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Gains to Trade

after state is realized
low endowment types purchase good 1 and sell good 2

before state is realized
traders wish to purchase insurance against  bad state

unique first best allocation
all traders consume ( ( ) ( )) /w w1 11 2 2+  of good 1, and w 2 of good 2.
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Private Information

idiosyncratic realization private information known only to the household

first best solution is not incentive compatible

low endowment types receive payment
( ( ) ( )) /w w1 12 1 2-
high endowment types make payment of  same amount

high endowment types misrepresent type  to receive rather than make
payment
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Incomplete Markets

prohibit trading insurance contracts

consider only trading ex post after state  realized

resulting competitive equilibrium

• equalization of marginal rates of substitution between the two goods
for the two types

• low endowment type less utility than the high endowment type
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Mechanism Design

purchase x1 1 0( ) >  in exchange for x1 2 0( ) <

no trader allowed to buy a contract that would later lead him to
misrepresent his state

assume endowment may be revealed voluntarily, so low endowment
may not imitate high endowment

incentive constraint for high endowment
~ ( ( ) ( )) ~ ( ( ))

~ ( ( ) ( )) ~ ( ( ))

u x u x

u x u x

1 1 1 2 2 2

1 1 1 2 2 2

2 2 2

2 1 1

w w
w w

+ + +
� + + +

• Pareto improvement over incomplete market equilibrium possible since
high endowment strictly satisfies this constraint at IM equilibrium

• Need to monitor transactions
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Lotteries and Incentive Constraints

one approach:  X  space of triples of net trades  satisfying incentive
constraint
use this as consumption set

our approach: enrich the commodity space by allowing sunspot contracts
(or lotteries)

1) X may fail to be convex

2) incentive constraints can be weakened - they need  only hold on
average

E u x u x

E u x u x

| ~ ( ( ) ( )) ~ ( ( ))

| ~ ( ( ) ( )) ~ ( ( ))
2 1 1 1 2 2 2

1 1 1 1 2 2 2

2 2 2

2 1 1

w w
w w

+ + +
� + + +
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The Base Economy

households of I types i I= 1, ,K
individual household denoted by h Hi³ = [ , ]0 1
J traded goods j J= 1, ,K

random “sunspot” variable s  uniformly distributed on [0,1]

idiosyncratic risk
household of type i consumes in finite number of states s Si³  where
probability is p i s( ) satisfying p i

s S
si ( ) =

³Ê 1

states are drawn independently by households
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contracts for delivery contingent on sunspot and the individual state of
the household
(note that not on state of other households - simplifies notation)

x s hj
i ( , , )s ³§ net amount of good j delivered to household h of type i

when the idiosyncratic state is s and the sunspot state is s .

1) trading
2) states and sunspots realized
3) deliveries
4) consumption
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type i and household h, sunspot s
net trading plan x hi JSi

( , )s ³§
must belong to feasible trading set X i

endowments incorporated directly into feasible net trade set

net trades are observable, consumption may not be

utility u Xi i: �§

for each  household h of type i sunspots induce a probability measure m i

over X i

a lottery for type i

utility of lottery m i  is

u u x d xi i

X

i i i i
i( ) ( ) ( )m m= I
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Incentive Constraints

constraints that must hold “on average”

feasible reports F Ss
i i²  represent the reports that a trader can make

about his state when his true state is s without being contradicted by
either public information or physical evidence.

Feasible Truthtelling: For all s Si³ , s Fs
i³ .

Feasible Misrepresentation: If s Fs
i’³ , then X Xs

i
s
i

’ ² .

 x hi ( , )s  is called incentive compatible if for all s F si’ ( )³

u x h d u x h ds
i

s
i

s
i

s
i( ( , )) ( ( , ))’s s s s- �II 0
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Perfect Competition with Sunspots

sunspot equilibrium with transfer payments
socially feasible sunspot allocation c
non-zero measurable price function p J( )σ ∈ℜ+ ; price of delivery
contingent on an idiosyncratic state is π σi s p( ) ( )
all types i and almost all h ³[ , ]0 1 ; c i h( , )¼  maximizes ui i(~ )c  over individual
sunspot allocations ~c i satisfying

sunspot budget constraint

p s s s p s c s si

s S

i i

s S

is p x s d s p h s di i( ) ( ) ( )[ ] ( ) ( ) ( , )[ ]
³ ³ÊI ÊI�

and incentive constraints u x h d u x h ds
i

s
i

s
i

s
i( ( , )) ( ( , ))’s s s s- �II 0 .

transfer payments depend only on types

p s c s s p s c s si

s S

i i

s S

is p h s d s p h s di i( ) ( ) ( , )[ ] ( ) ( ) ( $, )[ ]
³ ³ÊI ÊI=  a.e.
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Theorem 3.1.2 First Welfare Theorem Every sunspot equilibrium
allocation is Pareto efficient.
Theorem 3.1.3 Second Welfare Theorem For every Pareto efficient
allocation with equal utility there are prices forming a sunspot
equilibrium.

Theorem 3.1.4 Existence Theorem There is at least one sunspot
equilibrium with endowments.
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The Stand-in Consumer Economy

This is the one with 2.3 children and 1.8 automobiles
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What can the average household purchase?

Y y x X y A xi i J i i i i i≡ ∈ℜ ∃ ∈ =Closure(ConvexHull{ | , }) .

y Yi i³  may be allocated to households of type i by means of a lottery
over the consumption set X i

utility of average household get from a bundle y Yi i³

bundle is allocated to individual households optimally, then

v y u x d xi i i i i i( ) sup ( ) ( )= I m

subject to supportm i iX² , π µi

s S

i i i is x d x yi ( ) ( )
∈∑I ≤ ,

u x h d u x h ds
i

s
i

s
i

s
i( ( , )) ( ( , ))’s s s s- �II 0 .
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 an allocation y is a vector y Yi i³  for each type

allocation socially feasible if yi

i
�Ê 0

stand-in consumer equilibrium with transfer payments

non-zero price vector p M³§+

socially feasible allocation y

type i yi should maximize v yi i(~ ) subject to p y p yi i¼ � ¼~ , y Yi i³

a stand-in consumer allocation is equivalent to either a sunspot
allocation if the allocations use the same aggregate resources and yield
the same utility to each type.
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The Role of Lotteries and Incentive Constraints

Back to the insurance example

Proposition 4.1.1 Suppose that ~u1  exhibits declining absolute risk
aversion, and that ~u2  is strictly concave. If µ i  solves the stand-in
consumer problem

v y u x d x1 1 1 1 1 1( ) max ( ) ( )= I µ

subject tosupport µ1 1⊆ X , π µ1 1 1 1 1( ) ( )s x d x y
s Si∈∑I ≤ , g x d xi i i i( ) ( )µ ≤I 0,

  then µ1 is a point mass on a single point.

This generalizes
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Infinite Horizon Case: Single Consumer

continuum of ex ante identical households consumes in periods
t = 1 2, ,K.

risk idiosyncratic only
household is in one of finitely many individual states η ∈ I

individual states Markov
transition probabilities π η ηt t−

>
1

0

number of households moving between states deterministic

initial condition is steady state
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Sunspots and Histories

each period t, after idiosyncratic states realized
sunspot (public randomization device, lottery) σ t  is drawn from i.i.d.
uniform distribution

s t t= ( , , , , , )η σ η σ η σ1 1 2 2K  history of idiosyncratic states and sunspots

length of the history t s t( ) =
τ th state ητ ( )s
histories ordered in natural way ~s s≥
s −1 history that precedes s
η t s( )  final state η t

each time, given initial distribution of states, transition probabilities and
sunspot process induce probability measure over length t histories π ( )ds



21

Consumption Plans and Utility

J  different consumption goods

allocation assigns household  net-trade xs
J∈ℜ  contingent on

idiosyncratic history of household

households have common discount factor 1 0> ≥δ

x  is a history contingent consumption plan

U x u x dst

t s st s t
( ) ( ) ( , ) ( )

( )
= − −

=

∞

=∑ I1 1

1
δ δ η π

u is concave and bounded below
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Participation Constraints

V u dst

t st s t
( ) ( ) ( , ) ( | )

( )
η δ δ η π η0 0 01 0≤ −

=

∞

=∑ I  defines individually rational

utility levels

participation constraint
( ) ( , ) ( | ) ( )

(~) ( )
~ ~1− ≥

=

∞

=∑ Iδ δ η π η ηt

t t s s st s t s su x ds V

note V ( )η = −∞ is allowed
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A feasible report is F Ih ²

If misrepresentation is possible it will not be discovered at a later date t

Feasible reporting plan is map µ η η:( , ) ~s →  such that ~h h³F

induces a map S Sµ →  from histories to histories
the history that is reported given the true history

induces a map X Xµ →  from allocations to allocations;
the net trade corresponding to the reported history

an allocation incentive compatible if
U x U x( ) ( ( ))≥ µ  for all reporting plans µ
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Timing

• Draw  type
• Announce type
• Draw sunspot
• Contractual deliveries made
• Consume
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Aggregate Excess Demand

Aggregate excess demand for all households

x dsst s t( )
( )

=I π
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Direct Utility of the Stand-in Consumer

yt  is period t excess demand
allocate this amount efficiently among the ex ante identical group

v y U xx( ) max ( )=  subject to
x incentive compatible, x individually rational

x ds yst s t t( )
( )

=I ≤π

Indirect Utility of the Stand-in Consumer

v p v yy( ) max ( )=  subject to

p yt tt =

∞∑ ≤
1

0
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Recursive Characterization of Indirect Utility

space V of ( , )v w I∈ℜ × ℜ of type contingent utility and wealth

G pT
T( , )η −1 convex subset of V for infinite price vector p p pT

T T= +( , , )1 K

ηT −1 is announcement at time T −1, v
Tη  is the realized utility at time T
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Let V p wT
T( , , )η −1  be the greatest achievable utility without incentive or

participation constraints

characterize “equilibrium” G’s

• Boundedness
If ( , ) ( , )v w G pT

T∈ −η 1  then v V p wI T T
T

ηη
π η η η∈ − −∑ ≤( | ) ( , , )1 1

Question: can V  be infinite, yet w/ incentive and participation constraints
utility is bounded?
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Recursive Relations

Characterize G pT
T( , )η −1  in terms of G pT

T( , )η +1

(“self-generation”)

Suppose that ( , ) ( , )v w G pT
T∈ −η 1

Let ηT  be the announcement
Must find
• consumption plan x T( , )η σ
• new wealth w T( , )η σ
• new utilities v

T Tη η σ
+1

( , ), for all ηT I+ ∈1
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Feasibility

• consumption plan x T( , )η σ
• new wealth w T( , )η σ
• new utilities v

T Tη η σ
+1

( , ), for all ηT I+ ∈1

recursivity

( ( , ), ( , )) ( , )v w G pT T T
Tη σ η σ η∈ +1

 for all η σT ,

budget feasibility

w p x w d
T T TI T T T= +I∑ ∈ −η η η

η σ η σ π σ( , ) ( , )2 7
1

present value of utility

v u x v d
T TT T T T TT

T T I TIη ηη η η η ηη
δ η σ η δ η σ π π σ= − +

++ + −∈∈ ∑I∑ ( ) ( , ), ( , )1
11 1 1

0 5
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Participation and Incentive Compatibility

• consumption plan x T( , )η σ
• new wealth w T( , )η σ
• new utilities u

T Tη η σ
+1

( , ) , for all ηT I+ ∈1

v V
T Tη η≥ ( )

if ( , ~)η η ∈F  then

( ) ( , ), ( , )

( ) (~ , ), (~ , )

1

1

11 1

11 1

− + ≥

− +

++ +

++ +

∈

∈

∑I
∑I

δ η σ η δ η σ π σ

δ η σ η δ η σ π σ

ηη η η

ηη η η

u x u d

u x u d

T T I T

T T I T

TT T T

TT T T

0 5
0 5
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Results

Lemma 1: G is convex

Lemma 2: generation operator is monotone

Obvious starting place for finding generation operator: start at
solution without incentive and participation constraints, then work
down to the fixed point
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Two State One Good CES

With incentive constraints only: Atkeson and Lucas [1992]
Consumption is a logarithmic random walk with negative bias

With participation constraints only: there is a maximum and minimum
level of consumption; a favorable state always gets the maximum. Each
unfavorable realization leads to a drop in consumption until the minimum
is reached

What happens with both constraints?
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