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What Happens In Repeated Games With Short Periods?

� A common model: continuous time limit

� Two effects in general: player more patient, information less good

� Impact of distribution of signals in a fixed discrete-time game

� Change in distribution with the period length

� Focus on case of long-run versus short-run

� Abreu, Pearce and Milgrom [1991], Sannikov [2006], Sannikov and
Skrypcaz [2006], Faingold and Sannikov [2005], Faingold [2005]

� What is the underlying economics of all these results?
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Basics – Long Run versus Long Run

Fudenberg, Levine and Maskin [1995]  folk theorem

Under mild informational conditions any individually rational payoff
vector approximated by equilibrium payoff if common discount factor of
the players is sufficiently close to one

Sannikov [2005] characterizes equilibrium payoffs in continuous time
where information follows vector valued diffusion, proves a folk
theorem when information has a product structure and limit of interest
rates 0r → .
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Basics – Long Run versus Short Run

Fudenberg and Levine [1994] LP algorithm to compute limit of
equilibrium payoffs as discount factor of the long-run players converges
to one and characterizes limit payoffs when information has a product
structure; typically bounded away highest payoff when all players are
long-run, but better than static Nash

Faingold and Sannikov [2005]  show set of equilibria in continuous time
where information is a diffusion process is only the static equilibrium

Abreu, Pearce and Milgrom [1991] implicitly show that with continous
time Poisson information “bad news” signals lead to folk theorem,
“good news” signal lead to static Nash
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Summary

� Long run versus long run – length of period makes little difference

� Long run versus short run – length of period makes a big difference

� “good news” Poisson or diffusion leads to static Nash

� “bad news” Poisson leads to folk theorem
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Long-Run versus Short-Run

two-person two-action stage game payoff matrix

Player 2

L R

+1 u ,0 u ,1Player 1

-1 u ,0 u g+ ,-1

, 0u u g< >

2 plays L in every Nash equilibrium

player 1’s static Nash payoff u , also minmax payoff

player 1 prefers that player 2 play R

can only induce player to play R by avoiding playing –1

classic time consistency problem
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Information

end of stage game public signal z ∈ �  observed

depends only on action taken by player 1

(player 2’s action publicly observed)

public signal drawn from 1( | )F z a

F  is either differentiable and strictly increasing

or corresponds to discrete random variable

1( | )f z a  denotes density function

monotone likelihood ratio condition

1 1( | 1) / ( | 1)f z a f z a= − = +  strictly increasing in z

means that z  is “bad news” about player 1’s behavior in sense that it
means player 1 probably playing –1
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Other Stuff

Availability of public randomization device

τ  length of period

player 1 long-run player with discount factor 1 rδ τ= −

player 2 an infinite sequence of short-run opponents
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Best Perfect Public Equilibrium for LR

largest value v  that satisfies incentive constraints

1

1

(1 ) ( ) ( | 1)

(1 )( ) ( ) ( | 1)

( )

v u w z f z a dz

v u g w z f z a dz

v w z u

δ δ

δ δ

= − + = +

≥ − + + = −

≥ ≥

∫

∫

or v u=  if no solution exists

second incentive constraint must hold with equality

otherwise increasing the punishment payoff w retains incentive
compatibility and increases utility on the equilibrium path
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Cut-Point Equilibria

monotone likelihood ratio condition implies these best equilibria have a
cut-point property

*z�  is cut point

continuous z : a fixed cut-point

discrete z :  a cut-point randomized between two adjacent grid-points

Proposition 1: There is a solution to the LP problem characterizing the
most favorable perfect public equilibrium for the long-run player with
the continuation payoffs ( )w z  given by

*
( )

*
w z z

w z
v z z

≥=  <

�

�

and indeed, w u=
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Measures of Information

continuous case define

1 1* *
( | 1) , ( | 1)

z z
p f z a dz q f z a dz

∞ ∞
= = + = = −∫ ∫

interested in case in which τ  is small

information ( ), ( )q pτ τ  functions of τ

, { }ρ µ ∈ ℜ ∪ ∞  regular values of ( ), ( )q pτ τ  if along some sequence
0nτ →

0
lim ( ( ) ( )) / ( )n

n n nq p pτρ τ τ τ
→

= −  [signal to noise]

0
lim ( ( ) ( )) /n

n n nq pτµ τ τ τ
→

= −  [signal arrival rate]

[ ] [ ]( )1 (( ) / ) ( ) / /u u g q p pτ β τ τ+ − − −
.

* /( ) /v u gp q p u g ρ= − − → − ,   0lim max{ , *}nv u v
τ →

=
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(***) ( ) 1u u
g

µ
ρ

 − − 
 

if positive and v u>  there is a non-trivial limit equilibrium

exists positive ,rτ  such that for all smaller values exists equilibrium
giving long-run player more than u

conversely, if either v u≤  or (***) is non-positive then for any fixed 0r >
along the sequence nτ  the best equilibrium for long-run converges to u

if v u=  say that limit equilibrium is efficient: if and only if

Proposition 2: Suppose that ,ρ µ  are regular. Then there is a non-
trivial limit equilibrium if and only if /( )g u uρ > −   and 0µ >  and 0ρ > .
There is an efficient limit equilibrium if and only if 0µ >  and ρ = ∞.
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Poisson Case

public signal of long-run generated by  continuous time Poisson

Poisson arrival rate is

pλ  if action is +1

qλ  if action is  –1

“good news” signal means probably played +1: q pλ λ< ; z  number of
signals

“bad news” signal means probably played –1: q pλ λ> ; z  negative of
number of signals
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bad-news case q pλ λ>
cutoff number of signals before punishment v w−

two or more signals isn’t interesting since probability of punishment is
only of order 2τ

suffices to consider the cutoff in which punishment always occurs
whenever any signal is received

probability of punishment ( ) 1 , ( ) 1p qp e q eλ τ λ ττ τ− −= − = − , as the long-run
player plays –1 or +1

then ( ) / ,q p p q pρ λ λ λ µ λ λ= − = −  (big and positive respectively)

* /( )p q pv u gλ λ λ= − −

note independence of payoff u
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good news” case q pλ λ<

punishment triggered by small number of signals, rather than large

if there is punishment, must occur when no signals arrive

probability of punishment when no signal ( )γ τ

( ) ( ) , ( ) ( )p qp e q eλ τ λ ττ γ τ τ γ τ− −= =

regardless of ( )γ τ  implies 0ρ = , so only trivial limit
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Overview

with short run providing incentives to long-run has non-trivial efficiency
cost

“good news” case,  providing incentives requires frequent punishment

many independent and non-trivial chances of  a non-trivial punishment
in a small interval of real time, long run player’s present value must be
low

contrast, can be non-trivial equilibrium even in the limit when signal
used for punishment has negligible probability (as in bad-news case)

or several long run players so punishments can take the form of
transfers payments
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The Diffusion Case

signals generated by diffusion process in continuous time

drift controlled by the long-run action

sample process at intervals of length τ  implies signals have variance
2σ τ

we allow the variance signal 2 2ασ τ  where 1α < , with diffusion
corresponding to 1/ 2α =

mean of the process is  1a τ−  (recall that 1a =+1 or –1)

so:

*

*

zp

zq

α

α

τ
στ

τ
στ

− − = Φ 
 

− + = Φ 
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where Φ  is standard normal cumulative distribution

Proposition 3: For any 1α <  there exists 0τ >  such that for 0 τ τ< <
there is no non-trivial limit equilibrium

true even when 1/ 2α > , where process converges to deterministic one

contrast “bad news” Poisson case: like diffusion case corresponds to
1/ 2α =

exact form of noise matters: is it a series of unlikely negative events, as
in the “bad news” Poisson case, or a sum of small increments as in the
normal case?
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contrast the diffusion case 1/ 2α =  with a sum of small increments
where the scale of the increment is proportional to the length of the
interval

standard error of the signal of order τ

corresponds to case 1α =

take the limit of such sequence of processes, limit is deterministic
process without noise.

Proposition 4: If 1α =  there exists τ  such that for all 0 τ τ< <  (*) is
satisfied, and 0lim *v uτ → = .
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for fixed τ  taking a very large cutoff *z → ∞

causes the likelihood ratio /q p → ∞ , so /( ) 0p q p− →

so * 1v →

note , 0p q → , so for fixed u  and τ  and *z  sufficiently large, (*) must be
violated

for any choice of *, ,z r τ , there always u  sufficiently small that (*) holds

worst punishment determines the best equilibrium

going far enough into tail of normal, arbitrarily reliable information can
be found about whether a deviation occurred

information can be used to create incentives, provided sufficiently
harsh punishment available

when 1α =  signal to noise ratio improves sufficiently quickly that we
can exploit the shorter intervals to choose a bigger cutoff value of ζ
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Diffusion as a Limit

families of games indexed by period length τ

signal z  varies with the period length τ

basic scenario: z  an aggregate of discrete random variables

examples: sales, prices, or other transaction data

specifically z  the sum of some number of “events” - independent
identically distributed random variables jZ  with

support of jZ  a fixed finite set, regardless of action profile.
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Wavelength and Frequency
time between moves, is τ

“observation frequency” /τ1

length of time between events (realizations of jZ ) is τ∆ ≤

event frequency /1 ∆

assume τ  an integer multiple of ∆

/k τ= ∆  events per period

case of interest: 0τ →  (forces 0∆ → )

assume τ  a continuous strictly increasing function of  ∆ with (0) 0τ =

distribution of jZ  and its support depend on ∆

cardinality of the support of jZ  is a constant, independent of ∆.
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Converging to Diffusions: General Results
information available at end of period t

( )/
/

t
jj t

z Zτ+ ∆

= ∆
= ∑

basic diffusion hypothesis: for each fixed action 1, 1i = + −  of long-
run player

/
1

t
jj

z Z∆  

=
= ∑  converges to a diffusion as 0∆ →
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simplest case τ∆ =

maximum possible value of /q p : punishing only on signal
maximizing ( | 1)/ ( | 1)f Z f Z∆ ∆

− +

Define  ( )( , ) max ( | 1)/ ( | 1)
k

ZM k f Z f Z∆ ∆
∆ = − + .

Proposition 6: Suppose that 0lim ( )/ kτ∆→ ∆ ∆ = < ∞. Then
(a) If 0lim sup ( , )M k∆→ ∆ < ∞ there is no efficient patient equilibrium.
(b) If 0lim sup ( , ) 1M k∆→ ∆ =   there is only a trivial limit equilibrium.



24

three cases
2

1σ+  variance of limit diffusion when long-run player friendly

1 1/ 1σ σ− + >  a large draw of z  “bad news”

1 1/ 1σ σ− + <  a large draw of z  “good news”

equal variances 1 1σ σ+ −= .

Proposition 7: In the bad news case ( 1 1/ 1σ σ− + > ) if 0lim ( )/τ∆→ ∆ ∆ = ∞

there is an efficient limit equilibrium.
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Binomial Arrays Converging to Diffusions

Proposition 9: Suppose the period length is ∆, and that we have i.i.d.
binomials ( )iZ ∆  where the common outcomes are ( ) ( )x y∆ > ∆  and the
probability of ( )x ∆  under action i is ( )iα ∆ , with

0lim ( ) ,0 1i i iα α α∆→ ∆ = < < . If the sums � �/
1

t
jj

Z∆

=∑ converge to a

diffusion with drift iµ  and volatilities  2
iσ  then 1 2σ σ= .

Proposition 10: Suppose in addition
(i) 2/7

0lim ( )exp( ( ) )kτ∆→ ∆ ∆ → ∞

Then all limit equilibria are trivial.
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Trinomial Informational Limits

drifts 1 1,µ µ
−

 and volatilities 2 2
1 1,σ σ

−

construct a particular family of pairs of trinomials with aggregate

converging to diffusion with these parameters

indexed by a free parameter γ  not determined by the limit diffusions

for any 1γ ≥  set 2 2
1 1max( , )γ γ σ σ

−
=
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three possible outcomes, ( ),0, ( )x h h= − ∆ ∆ , 1/2 1/2( )h γ∆ = ∆

probability of outcome 0 2( )/i iα γ σ γ= −

probability of outcome h+   

1/2

1/2
1( )

2 2
i i

i
α µ

β
γ

− ∆
∆ = + .
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Bad news case 2 2
1 1σ σ− +>  and Zero Means.

construct a sequence of games converging to a diffusion with common

volatilies with an efficient limit equilibrium

conclusions based on hypothesis that the variances are equal in the

limit do not apply to the limit of the equilibria along the sequence

without additional information, such as the rate at which the variances

become equal



29

Good News Case 2 2
1 1σ σ− +<  and Zero Means

( )τ ∆ = ∆

best limit equilibrium payoff i
2

1
2 2
1 1

( 1)u gγ σ

σ σ

−

−

−

−

−
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1/2( )τ ∆ = ∆

signals observed each period converge diffusions

suppose 1 1

1
/( )g u uσ σ

σ

+ −

−

−
> −  so non trivial limit equilibrium for

diffusion

γ   large get examples with only trivial equilibrium when τ = ∆ and non

trivial limit when 1/2( )τ ∆ = ∆

γ  near 1, and 1σ
−

 near 1σ+   get examples with non trivial limit when

τ = ∆ and trivial limit when 1/2( )τ ∆ = ∆


