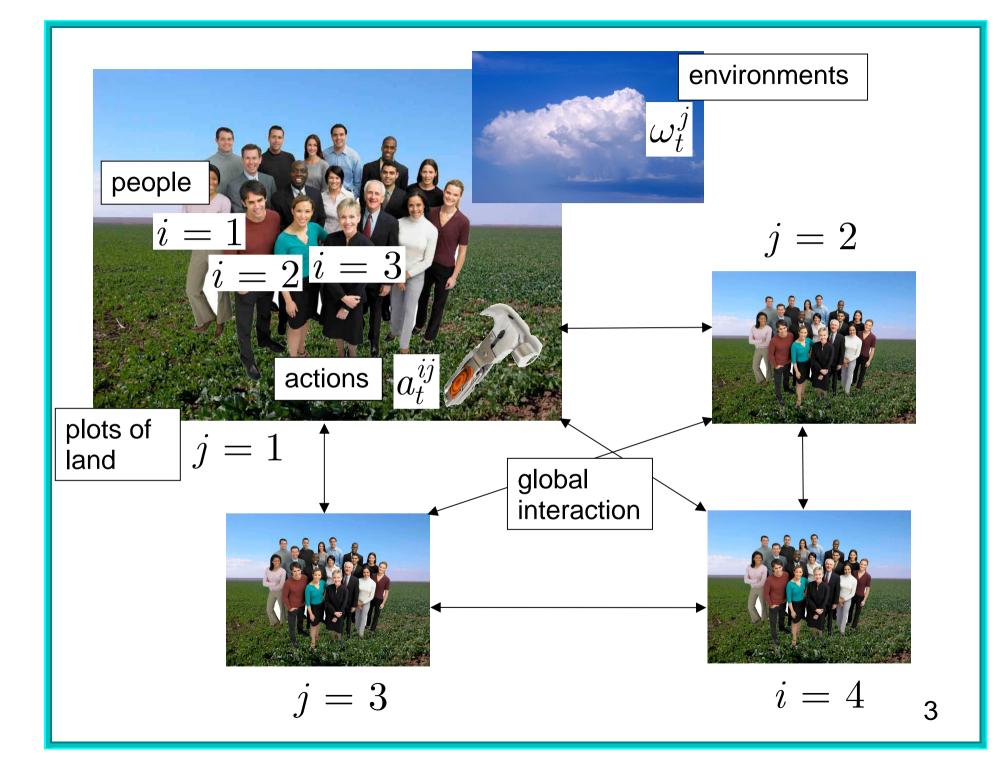
Anti-Malthus: Evolution, Population and the Maximization of Free Resources

David K. Levine Salvatore Modica Evolution + voluntary migration = efficiency

Isn't the way the world works



Consequences (Stage Game)

- \succ Utility $u^i(a_t^j, \omega_t^j)$
- Future environment $\omega_{t+1}^j = g(a_t^j, \omega_t^j)$
- Free resources $f(a_t^j, \omega_t^j) > 0$ [discussed later]
- **Expansionism** $x(a_t^j) \in \{0,1\}$

Assumptions about an individual plot:

Irreducibility: any environment can be reached

Steady state: if everyone plays the same way repeatedly the environment settles to a steady state.

Disruption

At most one plot per period disrupted, probability of plot k being disrupted (forced, conquered) to play action a_t^j (at time t + 1) given actions and environments on all plots a_t, ω_t is

 $\pi^k(a_t^j, a_t, \omega_t)$

Definition: Steady State Nash Equilibrium

a pair a_t^j, ω_t^j that is as it sounds

Malthus Example

- Environment ω_t^j is current population $\in \{1, \dots, N\}$
- Action stes A^i are desired target population $\in \{1, \dots, N\}$
- Utility $u^i(a_t^j, \omega_t^j) = a_t^{ij}$ from target population
- ω_t^j dynamics $\omega_{t+1}^j = g(a_t^j, \omega_t^j)$ well bahaved
 - Players chosen at random
 - Average target (average of averages) $\bar{a}_t^j = \sum_{i=1}^N a_t^{ij} / N$

$$\omega_{t+1}^{j} = \omega_{t}^{j} + \begin{cases} -1 & \\ 0 & \text{if} \\ 1 & \end{cases} \begin{cases} \overline{a}_{t}^{j} < \omega_{t}^{j} - 1/2 \\ \omega_{t}^{j} - 1/2 \leq \overline{a}_{t}^{j} < \omega_{t}^{j} - 1/2 \\ \overline{a}_{t}^{j} > \omega_{t}^{j} + 1/2 \end{cases}$$

• Equilibrium: Unique SS NE with $a_t^{ij} = \omega_t^j = N$

Players' Behavior

- Players' behavior at *t*:
 - If in s_{t-1} plot j was disrupted, on j they do what they have to
 - Otherwise, player *i* in plot *j* plays distribution $B^i(h_{t-1}^j)$ on A^i
- Quiet and noisy states, and assumption on play

Definition

A quiet state s_t for player *i* on plot *j* is a state where (a_t^j, ω_t^j) has been constant for *L* periods and where a_t^{ij} is best response. Noisy states for *i* are the other states.

Assumption

If s_{t-1} was a quiet state for player i then at t he plays best response for sure. Otherwise B^i is a full-support distribution on A^i .

Social Norm Games

Discuss the fact that you can equilibria at well above subsistence, real question: which equilibrium?

- Many social norms in infinitely repeated games but also in finite games
- Adopt two-stage approach with a *shunning* punishment giving utility of $\Pi \leq 0$
- Ensure that any profile is two-stage NE (in which defaulter is costlessly shunned)
- Focus on profiles which maximize free resources

Aggregation of Free Resources and Conflict Resolution

What happens to the subsistence farmers when they get invaded?

Free Resources

- We assume (a_t^j, ω_t^j) generates free resources $f(a_t^j, \omega_t^j) > 0$
- Example, Malthus continued. Maximum population size *N* and subsistence level *B* are defined by

$$Y(N)/N > B > Y(N+1)/(N+1)$$

with Y production function (concave increasing). Population ω_t^j generates $f(a_t^j, \omega_t^j) = Y(\omega_t^j) - \omega_t^j B > 0$

• Free resources of society playing a_t^k

$$F(a_t^k, a_t, \omega_t) = \sum_{a_t^j = a_t^k} f(a_t^j, \omega_t^j)$$

Pooling forces crucial for expansion

Expansion, Expansiveness and Free Resources

- Expansions/disruptions depend on Expansiveness and Free Resources
- Assume resistance to disruption lower when fewer free resources, zero (i.e. positive probability of disruption) if other is expansive

Assumption (Monotonicity)

Suppose $F(a_t^k, a_t, \omega_t) \leq F(a_t^j, a_t, \omega_t)$. If $x(a_t^k) = x(a_t^j) = 0$ then $r[\Pi(a_t^k, a_t, \omega_t)] \leq r[\Pi(a_t^j, a_t, \omega_t)]$; if $x(a_t^j) = 1$ then $r[\Pi(a_t^k, a_t, \omega_t)] = 0$.

 Next: when only two societies, resistance depends on ratio of free resources

Expansion, Expansiveness and Free Resources

Assumption (Binary Case)

If a_t has two societies then

$$r[\Pi(a_t^k, a_t, \omega_t)] = q(F(a_t^{-k}, a_t, \omega_t)/F(a_t^k, a_t, \omega_t), x(a_t^{-k}))$$

- q non-increasing in the first argument
- $q(0, x^j) = q(\phi, 0) = 1$
- $0 < \inf\{\phi | q(\phi, 1) = 0\} < 1$
- Comments
 - $q(0, x^j)$ resistance to mutants
 - $q(\phi, 0)$ resistance to insular groups
 - Exapnsive can disrupt you with positive probability for some $\phi < 1$

Expansion, Expansiveness and Free Resources

• Lastly, divided opponents can't do better than united:

Assumption (Divided Opponents)

If
$$a_t$$
 is binary, \tilde{a}_t has $F(a_t^k, a_t, \omega_t) = F(\tilde{a}_t^k, \tilde{a}_t, \omega_t)$ and
 $\sum_{k' \neq k} F(a_t^{k'}, a_t, \omega_t) \ge \sum_{k' \neq k} F(\tilde{a}_t^{k'}, \tilde{a}_t, \omega_t)$, then
 $r[\Pi(a_t^k, a_t, \omega_t)] \le r[\Pi(\tilde{a}_t^k, \tilde{a}_t, \omega_t)]$.

- To sum up, 3 Assumptions:
 - Monotonicity, Ratio in Binary Case, Divided Opponents

Preliminary Results

Theorem [Young]: Unique ergodic Assume expansive steady state Monolithic (expansive) steady states Mixed steady states Non-expansive steady states Proposition: When $\varepsilon = 0$ that is all

Main Result

- A Nash State is an s_t which is quiet for every player in every plot
- Characerizing ergodic sets S[0, J]

Proposition

The sets S[0, J] are singleton Nash states, with either no expansive society, or a single expansive society with ratio of free resources less than $\overline{\phi}$ to all others (if any).

• What we show (abriged version) is

Theorem (Main Result)

For large enough J the stochastically stable states are exactly the Nash states with one expansive society playing the NE with maximum free resources (among all expansive steady states NE).

Technological Progress

- In Malthus example free resources where $f(a_t^j, \omega_t^j) = Y(\omega_t^j) \omega_t^j B$ with population ω_t^j which depends on action path, with B subsistence income
- Take production

AY(z) A technology level, z population

so free resources are AY(z) - zB

• Which population maximizes free resources as A varies? What about income per capita?

Technological Progress

- Contrast Malthus case: for all A choose z such that AY(z)/z = B
 - Population increasing in A
 - Income per capita constant
- Our result

Proposition

The free resource maximizer z is increasing in A. Per capita output:

- If $Y(z) = z^{\alpha}$ per capita output is independent of A.
- If Y(z) = log(a+z), a > 0 it is increasing for sufficiently large A; for large enough a it is decreasing in A then increasing.
- log case of rapid decreasing return to population
 - In advanced economies income per capita grows with A
 - possibly hunter-gatherers better off than farmers

- Gov provides public good free resources and pays the cost to extract them. Last section incentive payments
- Here monitoring of unobservable output, through *Commissars* (\simeq tax collection for FR max, info rent for profit max)
- Libertarian paradise no commissars, no free resources (no gifts)

Bureaucratic State

- Monitoring: produce y if unmonitored, y_S if monitored y_S stochastically dominated by y. Assumed Ey > B
- Commissars, fraction ϕ of population
 - Produce no output
 - Monitor one another in circle plus κ other individuals (reducing their output)
 - Must be paid as much as the others

But convert unobservable output into free resources

- Producers are fraction 1ϕ of population Monitored producers, wage w, are fraction $\kappa \phi/(1-\phi)$ of producers (fraction $\kappa \phi$ of population)
- Expected income of producer is

$$\bar{W} = rac{\kappa\phi}{1-\phi}w + \left(1-rac{\kappa\phi}{1-\phi}
ight)Ey$$

Bureaucratic State

• Per capita f come from monitored producers, fraction $\kappa\phi$ Fraction ϕ of commissars must be paid \overline{W} . So expected f is

$$f = \kappa \phi (E y_s - w) - \phi \, \bar{W}$$

• To max f subject to $ar{W} \geq B$ and $\kappa \phi/(1-\phi) \leq 1$

• Alternative model: *Creepy Bureacracy*

 Efficiency of commissars decreasing in \u03c6 "Heavy fraction calls more weight"

 κ decreasing function of ϕ

$$\kappa(\phi) = \kappa(1-\phi)$$

Result here is the following

Proposition

Assume $Ey_s > Ey/2$ and $\kappa > 1$ and maximization of free resources.

- Fraction of commissars is positive
- Fraction of monitored producers is the same with or without creep
- Fraction of commissars is higher with creepy bureaucracy.