Monopoly and the Incentive to Innovation When Adoption Involves Switchover Disruptions

June 2, 2008

Thomas J. Holmes, David K. Levine and James A. Schmitz Jr.

The Impact of Competition on Adoption of Cost Reducing Innovation

Evidence: monopolists aren't as inclined to adopt new cost reducing technologies

The fat happy monopolist

Don't see waves of innovation after trade protection (Smoot-Hawley)

> Do see waves of innovation after trade liberalization

≻AT&T

Well documented cases

- ➤ Midwest iron ore
- Chilean copper industry
- Cement manufacturing

Existing Theories of Innovation and Market Power

Arrow: competition leads to more innovation

Competitors produce more, so more units to spread the fixed cost over

- > Are fixed costs that relevant to adoption of new innovations?
- Each individual competitor may produce less than a single monopolist
- Depends critically on demand elasticity

Gilbert and Newberry: competition leads to less innovation Monopolist has incentive to adopt to preempt rivals

- ➢ But you don't need to adopt it to preempt just patent it
- ➤G&N argue that even invention without adoption is socially desirable
- Unfortunately their argument is wrong

Switchover Disruption

- Usual assumption: new techology unambiguously good or you wouldn't consider using it
- But new technologies never work properly they eventually work better with some probability
- One cost of adopting are lost or delayed sales
- The more profitable each sale the greater the opportunity cost of adoption

Examples of Switchover Disruption

- Boeing Dreamliner switch to offsite assembly
- GM robotic assembly line
- United Airlines Denver automated baggage handling
- Japan steel switch from open hearth to basic oxygen, initial 14% drop in TFP, three years to reach old level of productivity (Nakamura and Ohashi)
- Supply chain management see Hendricks and Singhal [2003]
- Work rule changes
- Organizational structure
- CEO change (big literature on this)
- ➤ IT infrastructure
- \succ And on and on

The Existing Market

Industry demand D(p)Inelastic case $D(p) = 1, p \le \theta$ Incumbent produces at MC c^0 Rivals produce at $c^0 + \tau$ $p_0^M > c^0 + \tau$ pure monopoly price

The New Technology

production takes place over time $0 \le t \le 1$,interest rate ρ

 $c_t = f(t)$ marginal cost with new technology

f(t) strictly decreasing

 $\overline{c} = f(0), \underline{c} = f(1) < c^0$

change of variable for integrating

G(c) time remaining when marginal cost is c

$$g(c) = -G'(c)$$
 density

 $h(c) = e^{-\rho(1 - G(c))}g(c)$

fixed cost of adoption F drawn from a continuous distribution

Who Has the Opportunity to Innovate?

- > Arrow: only incumbent can adopt
- Gilbert and Newbery: technology belongs to an outsider, incumbent chooses to adopt or allow rival adopt

The Arrow Case

not a drastic cost reduction: monopoly price at \underline{c} assumed still to be above $c^0+\tau$

No switchover disruption $c^0 \geq \overline{c}$

Net gain from adopting:

$$w^{No} - SD = D(c^0 + \tau) \int_{\underline{c}}^{\overline{c}} h(c) [c^0 - c] dc$$

adoption if $w^{No}-^{SD} \ge F$

with downward sloping demand, less market power meaning smaller τ means more D hence more adoption

from this point we assume that D is inelastic, eliminating the arrow effect

Switchover Disruption

 $c^0 < \overline{c}$

big relative to market power $c^0 + \tau \leq \overline{c}$

so you won't sell until $c_t \leq c^0 + au$

$$w_{arrow}^{SD} = \int_{\underline{c}}^{c^0 + \tau} h(c) [c^0 + \tau - c] dc - \int_{\underline{c}}^{\overline{c}} h(c) \tau dc$$
$$w_{arrow}^{SD} = \int_{\underline{c}}^{c^0 + \tau} h(c) [c^0 - c] dc - \int_{c^0 + \tau}^{\overline{c}} h(c) \tau dc$$
$$\frac{dw_{arrow}^{SD}}{d\tau} = -\int_{c^0 + \tau}^{\overline{c}} h(c) dc$$

negative: more market power, less innovation

Gilbert and Newbery

- \boldsymbol{v} value to incumbent of adopting
- \boldsymbol{u} value to incumbent if rival adopts
- \boldsymbol{r} value to rival from adopting

No Switchover Disruption

$$v^{No} - SD = D(c^0 + \tau) \int_{\underline{c}}^{\overline{c}} h(c) [c^0 + \tau - c] dc$$

$$u^{No} - SD = \int_{\max\{c^0 - \tau, \underline{c}\}}^{\max\{\overline{c}, c^0 - \tau\}} h(c) [c + \tau - c^0] dc$$

$$r^{No} - SD = \int_{\min\{c^0 - \tau, \underline{c}\}}^{\min\{\overline{c}, c^0 - \tau\}} h(c) [c^0 - \tau - c] dc$$

then

$$\frac{d(v^{No}-^{SD}-u^{No}-^{SD})}{d\tau} = \int_{\underline{c}}^{\overline{c}} h(c)dc - \int_{\max\{c^0-\tau,\underline{c}\}}^{\max\{\overline{c},c^{0-\tau\}}} h(c)dc$$

so non-negative and if the max operators bind, strictly positive

Gilbert Newbery Conclusions

- > more monopoly power, more innovation
- > incumbent always get the new technology, never the rival
- > incumbent never suppresses innovation always adopts

Switchover Disruption

$$H^{disrupt} = \int_{c^0}^{\overline{c}} h(c) dc$$
$$H^{beyond} = \int_{\underline{c}}^{c^0} h(c) dc$$

 $H^{disrupt}$ measures the duration of the switchover

Monopoly Power is Small

Proposition 3: Suppose that $\overline{c} > c^0$ and that τ is small. Consider three different durations of disruption

(i) (short disruption) $H^{disrupt} < H^{beyond}$ incumbent innovates and innovation increases in market power τ

(ii) (intermediate disruption) $H^{beyond} \leq H^{disrupt} \leq 2H^{beyond}$ incumbent innovates and innovation decreases in market power τ

(iii) (long disruption) $H^{disrupt} \ge H^{beyond}$ rival innovates

Large Monopoly Power

Supression can occur if τ exceeds a threshold $\hat{\tau}$

```
f'(t)e^{-\rho t} increasing in t
```

the discounted version of f convex

initial advances faster than subsequent advances

```
implies h(c) decreases in c
```

4: Proposition 3 (ii) and (iii) continue to hold for $\tau \leq \min\{c^0 - \underline{c}, \hat{\tau}\}$

Comparative Statics

What does price cost margin measure? Monopoly power?

Take the Arrow setting

Suppose the monopolist will not innovate at the current value of τ

Suppose his monopoly power is reduced a little bit, so τ goes down, and this leads him to introduce an innovation that reduces cost

Then his price-cost margin goes UP not down

Reinterpretation of the Model

h(c) is a density function from which marginal cost is drawn

the new technology has time constant MC, but the new technology is irreversible