A Forward Looking Assessment of Behavioral Economics

FUR XIV

June 14, 2010

David K. Levine

Theory That Works: Voting

Levine and Palfrey [2007]

Theory that Works: Competitive Equilibrium

143

Plott and Smith [1978]

Theory That Works? Ultimatum Bargaining

х	Offers	Rejection Probability
\$2.00	1	100%
\$3.25	2	50%
\$4.00	7	14%
4.25	1	0%
84.50	2	100%
\$4.75	1	0%
\$5.00	13	0%
	27	

US \$10.00 stake games, round 10

Roth, Prasnikar, Okuno-Fujiwara, Zamir [1991]

What the Theory Tells us: Losses In Ultimatum

Out of \$10

	Losses
Knowing	\$0.34
Unknowing	\$0.99

Fudenberg and Levine [1997]

➤ Learning and short-term errors are an important part of mainstream economics

Equilibrium: The Weak versus the Strong

Approximate or ε -equilibrium

 s_i strategy choice; μ_i beliefs; u_i utility

$$u_i(s_i | \mu_i) + \varepsilon \ge u_i(s_i' | \mu_i)$$

equilibrium: beliefs are correct

Individual Play in Voting

Quantal Response Equilibria

 σ_i mixed strategy or probability of play

 $\lambda_i > 0$ parameter

$$p_i(s_i) = \exp(\lambda_i u_i(s_i, \sigma_{-i}))$$

$$\sigma_i(s_i) = p_i(s_i) / \sum_{s_i} p_i(s_i')$$

Games with Strong Equilibria

- > voting
- > competitive equilibrium

Quantal Response Application: Goeree and Holt [2001]

- Original
 Epsilon Equilibrium
- New Epsilon Equilibrium with Altruistic Preference
- Original Quantal Response
 Equilibrium -(320,40) case
- Original Quantal Response Equilibrium -(44,40) case
- New Quantal Response
 Equilibrium -(320,40) case
- New Quantal Response
 Equilibrium -(44,40) case

Procrastinating at the Health Club

- ➤ people who choose membership pay more than \$17, even though a \$10-per-visit fee is also available
- ➤ agents overestimate ... delay contract cancellation whenever renewal is automatic (\$70 per month)

DellaVigna, Malmendier 200

Hypothesis 1: people think incorrectly that they will cancel tomorrow

Hypothesis 2: people think it will be an expensive hassle to cancel; wait for "hassle" cost to be low

Tasks for Behavioral Economics

- ➤ Learning (behavioral?)
 - ➤ One-off play and level-k reasoning
- > Study of preferences
 - > Endogenous social preference
 - ➤ Risk and intertemporal preference
 - ➤ Ambiguity aversion
 - ➤ Habit formation
 - > Consumer lock-in
 - Menu choice and self-control
 - > The reference point
- > Need for unified not one-off theories

The Rabin Paradox

If you are indifferent between a 70% - 30% chance of

A: \$40 and \$32

B: \$77 and \$2

And your lifetime wealth is \$860,000 then your coefficient of relative risk aversion is 27,950

If you are indifferent between holding stocks and bonds your coefficient of relative risk aversion is 8.84

➤ The reference point is real

Dual Self Models

- ➤ Motivated by present bias and self-commitment
- ➤ Equivalent under certain circumstances to models of self-control costs and menu choice
- > To explain: hyperbolic discounting
- ➤ To explain: addiction
- > Turns out resolves other puzzles: Rabin paradox, Allais paradox

Commitment versus Self-control

$$U_{RF} = \sum_{t=1}^{\infty} \delta^{t-1} |u_t - g(\overline{u}_t - u_t)|$$

Self-Control with a Cash Constraint

periods $t = 1, 2, \dots$

state $w \in \Re_+$ wealth at beginning of period

at the beginning of the period "pocket cash" x_t chosen not subject to self-control (that is — by earlier short-run self)

consumption $0 \le c_t \le x_t$ subject to self-control cost

 $w_{t+1} = R(w_t - c_t)$ no borrowing possible, and no source of income other than return on investment

The Consumption Function

Conclusions

- ➤ Rabin paradox
- ➤ No connection between risk aversion for small and large stakes
- ➤ No obvious implication for macro
- > Yet: Allais and common ratio paradoxes explained

Probabilistic Hyperbolic Discounting

		Probability of reward	
		1.0	0.5
A	\$175 now	0.82	0.39
	\$192 4 weeks	0.18	0.61
В	\$172 26 weeks	0.37	0.33
	\$192 30 weeks	0.63	0.67

Keren and Roelsofsma [1995].

The Delayed Allais Paradox

	Now	3 month delay
A. 1.00 chance of 9 euros	0.58	0.43
B. 0.80 chance of 12 euros		
A. 0.10 chance of 9 euros	0.22	0.21
B. 0.08 chance of 12 euros		

Gradual Decay?

Myerson and Green [1995]

months	marginal interest rate
0.23	132
1	82.1
6	40.9
12	42.7
36	26.0
60	8.0
120	9.4
300	6.6

Models of stochastic lived short-run selves; self-control as a stock Ozdenoren, Salant and Silverman [2009]