Variable-Lived Short-Run Selves

Drew Fudenberg and David K. Levine
September 8, 2009
The Problem

♦ Models of long-run planning and short-run impulsive selves provide a quantitative explanation of a wide variety of “behavioral” paradoxes, including the Rabin paradox, the Allais paradox, preferences for commitment in menu choice, hyperbolic discounting, the effect of cognitive load on decision making and reversals due to probabilistic rewards.

♦ These models have a fixed horizon for the short-run self that cannot explain overwhelming evidence that delay impacts decisions continuously.

♦ We introduce a model of short-run selves who live a random length of time as a method of maintaining the underlying strength and simplicity of the long-run/short-run self model while accounting for the continuous effect of delay.
The Model

periods are discrete and unbounded, \(k = 1, 2, \ldots \).

fixed, period and history invariant set of actions \(A \) for the short-run selves

a measure space \(Y \) of states

a set \(R \) of self-control actions for the long-run self, \(0 \in R \) means no self-control is used

\(A, Y, R \) closed subsets of Euclidean space

finite history of play \(h \in H \) of the past states and actions, \(h = (y_1, a_1, r_1, \ldots, y_k, a_k, r_k) \) plus the null history \(0 \)

\(H_t \) the set of \(k \)-length histories \(H_k \), length of the history \(k(h) \), final state in \(h \) is \(y(h) \), initial state \(y_1 \)

probability distribution over states at \(k + 1 \) depends on period-\(k \) state and action \(y_k, a_k \) by stochastic kernel \(\mu(y, a) \)

note that the long-run self’s action \(r \) has no effect on states
game is between long-run self with strategies $\sigma_{LR} : H \times Y \to R$, and sequence of short-run selves

period k short-run self plays in only one period, observes self-control action of long-run self prior to moving; uses strategy $\sigma_t : H_t \times Y \times R \to A$

collection of one for each SR is denoted σ_{SR}

for every measurable subset $R' \subseteq R, A' \subseteq A$ the functions $\sigma_{LR}(\cdot, \cdot)[A'], \sigma_k(\cdot, \cdot)[R']$ are measurable

strategies together with measure μ give rise to a measure π_k over length k histories

utility of the short-run self is $u(y, r, a)$: long-run player’s self-control action influences the short-run player’s payoff

the long-run self is completely benevolent

$$U_{LR}(\sigma_{LR}, \sigma_{SR}) = \sum_{k=1}^{\infty} \delta^{k-1} \int u_k(h) d\pi_k(h)$$
Assumption 0 (Upper Bound on Utility Growth): For all initial conditions

\[
\sum_{k=1}^{\infty} \delta^{k-1} \int \max\{0, u(h)\} d\pi_k(h) < \infty.
\]

short-run self optimizes following every history: \textit{SR-perfect}
interested in SR-perfect Nash equilibria
Assumption 1 (Costly Self-Control): If $r \neq 0$ then $u(y, r, a) < u(y, 0, a)$.

Assumption 2 (Unlimited Self-Control): For all y, a there exists r such that for all a', $u(y, r, a) \geq u(y, r, a')$.

With these two assumptions we may define the cost of self-control

$$C(y, a) \equiv u(y, 0, a) - \sup_{\{r | u(y, r, a) \geq u(y, r, a')\}} u(y, r, a)$$

Assumption 3 (Continuity): $u(y, r, a)$ is continuous in r, a.

The supremum can be replaced with a maximum Assumptions 1 & 3 imply cost continuous and

Property 1: (Strict Cost of Self-Control) If $a \in \arg \max_{a'}(u(y, 0, a'))$ then $C(y, a) = 0$, and $C(y, a) > 0$ for $a \not\in \arg \max_{a'}(u(y, 0, a'))$.
Assumption 4 (Limited Indifference): for all \(a' \neq a \), if
\[u(y, r, a) \geq u(y, r, a') \]
then there exists a sequence \(r^n \rightarrow r \) such that
\[u(y, r^n, a) > u(y, r^n, a') \].
short-run self is indifferent, long-run self can break tie for negligible cost
reduced-form optimization problem

\[H^{AY} = \{(y_1, a_1, \ldots, y_k, a_k)\}_k \] reduced histories

problem of choosing a strategy from reduced histories and states to actions, \(\sigma_{RF} : H^{AY} \times Y \rightarrow A \), to maximize the objective function

\[
U_{RF}(\sigma_{RF}) = \sum_{k=1}^{\infty} \delta^{k-1} \int [u(y(h), 0, a) - C(y(h), a)] d\sigma_{RF}(h, y(h))[a] d\pi_k(h)
\]

Theorem 1 (Equivalence of Subgame Perfection to the Reduced Form): Under Assumptions 1-4, every SR-perfect Nash equilibrium profile is equivalent to a solution to the reduced form optimization problem and conversely.
Convex Opportunity Based Cost of Self Control

\[C'(y, a) = g(\max_{a'} u(y, 0, a') - u(y, 0, a)) \]
Fixed Short-Run Self Lives

Each short-run player lives for one period – in empirical work, usually 24 hours

This introduces a discontinuity between things that happen in the next 24 hours and everything that happens afterwards
Hyperbolic Discounting Data

from Myerson and Green [1995]

<table>
<thead>
<tr>
<th>months</th>
<th>Interest rate over $1000 right now</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>132</td>
</tr>
<tr>
<td>1</td>
<td>93.6</td>
</tr>
<tr>
<td>6</td>
<td>49.7</td>
</tr>
<tr>
<td>12</td>
<td>46.2</td>
</tr>
<tr>
<td>36</td>
<td>32.7</td>
</tr>
<tr>
<td>60</td>
<td>22.8</td>
</tr>
<tr>
<td>120</td>
<td>16.1</td>
</tr>
<tr>
<td>300</td>
<td>10.4</td>
</tr>
</tbody>
</table>
Random Short-Run Self Lives/Period Length

Period \(k \) lasts a random length of time \(\tau \)

For notational simplicity, suppose that \(\tau \) takes on integer values called “days”

Each day, chance \(\mu \) current short-run self continues for another day, and chance \(1 - \mu \) replaced by different short-run self

\(k \)th SR self born at the random time \(t(k) \geq k \) in state \(Y \) he has lifetime utility

\[
Q_{kt} = \sum_{\tau=0}^{\infty} (\delta \mu)^\tau \text{Ev}(Y_{\tau}, r_{\tau}, a_{\tau}).
\]
♦ death of a SR self is an observable event that LR can condition on
♦ LR can commit to plan for lifetime of the current SR self
♦ Likewise, SR self can commit to a survival contingent plan for his lifetime
Reformulation in the Original Framework

Define the state \(y_k = (Y_t(k), \Delta_k) \)

where \(\Delta_1 = 1 \) and \(\Delta_k = \delta^{t(k-1)-k} \Delta_{k-1} \)

Define utility \(u((Y, \Delta), r, a) = \Delta v(Y, r, a) \)

And everything works as before
The Temptation

\[\bar{Q}_{kt} = \max\{a_{\tau}\}_{\tau=0}^{\infty} \sum_{\tau=0}^{\infty} (\delta \mu)^{\tau} \ Ev(Y_{\tau}, 0, a_{\tau}) \]
The Reduced Form

Let \(m_{kt} \) be the probability that \(k \) is born on day \(t \)

we can write the reduced form utility as

\[
U_{RF}(\sigma_{RF}) = \sum_{k=1}^{\infty} \sum_{t \geq k} \delta^{t-1} \left(Q_{kt} - g(\overline{Q}_{kt} - Q_{kt}) \right) m_{kt}
\]
Comments

- The model nests quasi hyperbolic discounting $\mu = 0$
- and geometric discounting $\lim \mu \to 1$
- and is well behaved in the continuous time limit
by continuity intermediate values of μ should better fit the data
Commitment versus Self-Control

the state Y is wealth $w \in \mathbb{R}_+$

the action a is a level of consumption $c \in \mathbb{R}_+$

utility is $v(y,a) = \log(c)$

$w_{t+1} = R(w_t - c_{kt})$

for simplicity all income discounted into wealth

commitment takes the form of mental accounting allocating a sequence of “pocket cash” limits x_{kt} that constrain the SR self according to

$c_{kt} \leq x_{kt}$

less flexible than self-control, but avoids self-control cost
Perfect Foresight Case

by stationarity the value function when new SR is born depends only on wealth: $V(w_t)$ so the Bellman equation is

$$V(w_t) =$$

$$\max\{c_t\} \sum_{\tau=t}^{\infty} (\delta \mu)^{\tau-t} \log(c_{\tau}) + \sum_{\tau=t}^{\infty} \delta^{\tau-t+1} (1 - \mu)(\mu)^{\tau-t} V(w_{\tau+1})$$

Theorem: the solution is $c_t = (1 - \delta)w_t$ independent of which SR self shows up

this can be implemented by choosing $x_{kt} = (1 - \delta)w_t$

$$V(w_t) = \frac{\log(w_t)}{1 - \delta} + \left\{ \frac{\log(1 - \delta)}{1 - \delta} + \frac{\delta \log(R\delta)}{(1 - \delta)^2} \right\}$$
Unanticipated Initial Period Opportunity

Choose today between z_0 right away and z_t at time t

$$\max_{\{c_{\tau}\}} C - g\left(\bar{Q}_0 - \sum_{\tau=0}^{\infty} (\delta \mu)^\tau \log(c_{\tau})\right)$$

$$+ \sum_{\tau=0}^{\infty} (\delta \mu)^\tau \log(c_{\tau})$$

$$+ \sum_{\tau=0}^{\infty} \delta^{\tau+1} (1 - \mu) (\mu)^\tau \frac{\log(w_{\tau+1})}{1 - \delta}$$

where

$$C = \delta (1 - \mu) \frac{B}{1 - \delta \mu}$$

$$x_\tau = (1 - \delta)(R\delta)^\tau w_0.$$
at time 0 learned that an amount \(z_t \) is to be received at time \(t \)
after the amount is received, R self may save some of it
a sequence \(Z_t \geq 0 \) of net increments to pocket cash

\[
Z_\tau = 0 \quad \tau < t
\]

\[
\sum_{\tau=0}^{\infty} R^{t-\tau} Z_\tau \leq z_t \quad (*)
\]

the temptation of the SR self is

\[
\bar{Q}_0 = \max_{\{c_\tau, Z_\tau\}} \sum_{\tau=0}^{\infty} (\delta \mu)^\tau \log(c_\tau) \quad \text{subject to } c_\tau \leq x_\tau + Z_\tau \text{ and } (*)
\]

versus

\[
\max_{\{c_\tau, Z_\tau\}} C - g\left(\bar{Q}_0 - \sum_{\tau=0}^{\infty} (\delta \mu)^\tau \log(c_\tau) \right) \\
+ \sum_{\tau=0}^{\infty} (\delta \mu)^\tau \log(c_\tau) \quad \text{also subject to } (*)
\]

\[
+ \sum_{\tau=0}^{\infty} \delta^{\tau+1} (1 - \mu) (\mu)^\tau \frac{\log(w_{\tau+1})}{1 - \delta}
\]