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Abstract: In a repeated game with imperfect public information, the set of equilibria 

depends on the way that the distribution of public signals varies with the players’ actions.  

Recent research has focused on the case of “frequent monitoring,” where the time interval 

between periods becomes small. Here we study a simple example of a commitment game 

with a long-run and short-run player in order to examine different specifications of how 

the signal distribution depends upon period length. We give a simple criterion for the 

existence of efficient equilibrium, and show that the efficiency of the equilibria that can 

be supported depends in an important way on the effect of the player’s actions on the 

variance of the signals, and whether extreme values of the signals are “bad news” of 

“cheating” behavior, or “good news” of “cooperative” behavior. 
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1. Introduction  

In a repeated game with imperfect public information, the set of equilibria 

depends on the way that the distribution of public signals varies with the players’ actions.  

When considering the case of “frequent monitoring,” where the time interval between 

periods becomes small, it seems natural to suppose that the distribution of signals 

changes in some way as the time period shrinks.  In this paper, we model the dependency 

of the information structure on the period length by supposing that there the players 

observe the state of a fixed continuous-time process at the start of each period, and that 

this process is either Poisson or a diffusion.     

Intuitively, if the public signal is “sales” or “revenues,” it corresponds to the 

aggregate of a number of individual transactions, so that over small enough time intervals 

we would observe at most a single transaction. Even for a monetary aggregate that 

measures all transactions in an economy, in any given picosecond we are unlikely to 

observe more than a single trade, so  the discrete Poisson process, then, is one natural 

way to model the frequent observation of revenues.” In practice, however, it is often not 

practical or possible to observe at a high enough frequency to track every discrete event. 

Instead, what is observed over the relevant time period is an aggregate of many events, 

and under standard conditions this aggregate converges to a diffusion as the period 

between events and their size both become small at a particular relative rate.  The 

continuous-time limit we compute here thus corresponds to the iterated limit where the 

observation period of the players, though short, is much longer than the period between 

events.
3
 

Our goal is to illuminate some conceptual points about the relationship between 

discrete and continuous time repeated games, and not to present a general theory, so we 

specialize throughout the paper to a specific example of a repeated game between a single 

long-run player and a sequence of short-run opponents. In this setting, the best 

equilibrium payoff can be attained by a “grim” strategy that prescribes the efficient 

outcome so long as the public signal above a critical threshold.  Our first main result, 

                                                 
3
 We examine more general ways of passing to the continuous time limit in a companion paper, Fudenberg 
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Proposition 1, shows how the existence of efficient or non-trivial equilibria in the limit of 

time periods shrinking to zero can be determined by two properties of the limits of the 

probabilities p  and q  that punishment is triggered under the equilibrium action and 

defection, respectively. Specifically, the key variables are the limit of the signal-to-noise 

ratio ( )/q p p− , which we denote by ρ ,  and the limit µ  of the rate at which deviation 

increases transitions to the punishment regime ( )/q pµ τ= −  where τ  is the length of 

the period. We show that there is a  non-trivial limit equilibrium if ρ  is sufficiently large 

and  0µ > , and that there is an efficient equilibrium in the iterated limit where first τ  

and then r  go to 0 if ρ = ∞  and 0µ > .  

Proposition 1 applies for arbitrary specifications of how the signal structure 

depends on the period length; the remainder of this paper considers the case where the 

signals comes from observing an underlying Poisson or diffusion process.  We find that 

the equilibrium set is larger (and so efficient outcomes are more likely to be supportable 

by equilibria) when the public signals correspond to the aggregation of a great many 

signals, that is, in the diffusion case, and that efficiency is less likely with Poisson 

signals. In addition, we find that when the signal is based on a diffusion what matters is 

the effect of the players’ actions on the variance, of the aggregate, as opposed to its mean: 

Efficiency is more likely when the “tempting” or “cheating” actions generate a higher 

variance. (Note that in a Poisson process (aggregated or not), the mean and variance are 

linked, so actions that increase the variance must increase the mean.) Our results show 

that the case where player’s actions control the drift but not the variance of a diffusion 

process, is a knife-edge, at least when the long-run player has only two actions, as the 

conclusions about the frequent-monitoring limit can change discontinuously if actions 

have even a small effect on the variance.
4
  

Finally, we extend the result of Abreu, Milgrom and Pearce [1991] (AMP) who 

show that Poisson events that correspond to bad news, meaning increased likelihood of 

“cheating,” lead to more efficient outcomes that Poisson events that correspond to good 

news.  These results about the most efficient limit equilibria are summarized in the 

following table: 

                                                 
4
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same limit variance as the efficient action does. The implications of this for the limits of discrete-time 

equilibria has not yet been worked out. 
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 Poisson Diffusion Diffusion, constant variance  

Bad News Non-trivial Efficient Trivial 

Good News Trivial Non-trivial Trivial 

 

Table 1: Most Efficient Limit Equilibrium Under Various Signal Structures 

 

Because discrete-time games are simpler and more familiar than games in 

continuous time, our analysis helps provide intuition for existing results on continuous-

time repeated games. In particular, we can use elementary calculus (l’Hopital’s rule) to 

show why diffusion signals with constant variance are relatively ineffective in supporting 

repeated play. Our methods also facilitate the analysis of diffusions where actions do 

change the variance of the signals. 

To set the stage for the issues we will address in this paper, a brief review will be 

useful. Under some identification conditions, Fudenberg, Levine and Maskin [1994]  

(FLM) provide a folk theorem for the case of all long-run players, showing that any 

individually rational payoff vector can be approximated by an equilibrium payoff if the 

common discount factor of the players is sufficiently close to 1. More precisely, let ( )E δ  

be the set of perfect public equilibrium payoffs for a fixed δ , and let 

1(1) lim ( )E Eδ δ→= ; on the conditions of the FLM theorem, a payoff vector v is feasible 

and individually rational if and only if it is in (1)E . It is important to recall that  the 

identification conditions used for this theorem are purely qualitative; when they are 

satisfied, the set (1)E  is independent of the exact nature of the distribution of signals and 

in particular of any quantitative measure of their “informativeness.” FLM also explain 

why the highest equilibrium payoff in symmetric strategies can be bounded away from 

efficiency when there are equilibrium payoffs that are symmetric and almost efficient.
5
 

Sannikov [2005] characterizes the equilibrium payoffs in a repeated game with 

two long-run players in continuous time, where players control the mean of a vector-

valued diffusion process; he shows that this set is not degenerate but that for a fixed 
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[2006] for a characterization of (1)E  without this condition. 
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interest rate r  it can be bounded away from full efficiency, in contrast to the FLM result. 

Under a somewhat stronger identification decision (what FLM called a “product 

structure”), he proves a folk theorem for the limit 0r → .  

For the case of games with both long-run and short-run players, Fudenberg and 

Levine [1994] provide a linear programming algorithm for computing the limit of the 

equilibrium payoffs as the discount factor of the long-run players converges to 1, and use 

this to prove a characterization of the limit payoffs in games with a product structure.  

This limit set is typically smaller than if all players were long run, and in particular the 

highest equilibrium payoff of a long-run player is bounded away from what it would be if 

all players were long run.
6
 However, the limit set typically does include payoff vectors 

that cannot be generated by static equilibria. For this reason it is striking to note that 

Faingold and Sannikov [2005] show that the set of equilibria in a repeated game with one 

LR player facing SR opponents in continuous time when the public information is a 

diffusion process is simply the static equilibria, irregardless of the interest rate, so that the 

Fudenberg-Levine characterization fails. Thus changing the standard model by assuming 

both short run players and a diffusion process makes a more significant qualitative 

difference than either change on its own; this is one of the findings we can explain with 

our discrete-time methodology. 

 A second existing result that we explain is that the effect just described is specific 

to the diffusion process, and does not in general extend to the case of continuous time 

repeated games with Poisson signals. AMP investigate how the set of equilibrium payoffs 

varies with period length in a two-action partnership game with two long-run players, 

where what is observed in each time period is the number of Poisson-distributed 

“signals” that have arrived in the period. They restrict attention to symmetric equilibria, 

and determine the limit of the highest symmetric equilibrium payoff as the time period 

shrinks to 0; whether this limit is   degenerate (that is, includes only the static equilibrium 

payoff) or not depends on the relationship between the parameters of the payoff matrix 

and the informativeness of the signals. Our setting of a repeated game between a long-run 

player and a sequence of short-run opponents is essentially equivalent to their model, as 

in each case there is no way to “efficiently punish” one player by simultaneously 
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 The reason for this was first noted by Fudenberg, Kreps, and Maskin [1990], which coves the case of 

perfectly observed actions. 
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rewarding his opponent, and the only way to provide incentives is to lower the 

equilibrium payoff after some of the signals, and the size of (1)E  thus depends on the 

probability that punishment is triggered.
7
   

This probability of punishment is endogenously determined as part of the 

equilibrium, but to characterize the most efficient equilibrium what matters is how small 

the probability can be made without giving a player an incentive to deviate. In the simple 

game we study, this minimum probability depends on a particular likelihood ratio that we 

identify. In the case of sampling from a fixed-intensity Poisson process, this likelihood 

ratio is constant as the time period shrinks, when it is sufficiently large, the equilibrium 

set is non-degenerate in the continuous-time limit, just as in AMP. In contrast, the key 

likelihood ratio converges to 0 when the signals correspond to sampling the diffusion 

process studied by Faingold and Sannikov, which provides a discrete-time explanation of 

their equilibrium degeneracy result.  

In games with all long-run players, the identification conditions imply that there 

are equilibria where incentives can be provided at negligible efficiency cost by efficient 

punishments; this is what FLM call  “enforcement on tangent hyperplanes.” Because the 

punishments can be efficient (i.e. tangential) their probability does not influence (1)E . 

This is related to Sannikov’s [2005] result that diffusion signals that satisfy an 

identification condition do allow non-trivial equilibria in games with all long-run players.  

In each case (both discount factors going to 1 and time periods shrinking to 0) the 

equilibrium continuation payoffs vary only slightly with each observation, and moving 

along a tangent hyperplane means that the efficiency loss is second order.
8
  

In contemporaneous work, Sannikov and Skrzypacz [2006] provide a linear- 

programming characterization of the limit of the equilibria of repeated games with two 

long-run players in discrete time as the period length shrinks and the interest rate goes to 

0, where the public signal is derived by sampling an underlying continuous-time Levy 

process (a combination of a diffusion process and a Poisson process) whose parameters 

are independent of the sampling length. They show, loosely speaking, that near the 

                                                 
7
 The FLM and FL results both use a “full-dimension” condition. See Fudenberg, Levine and Takahashi 

[2006] for a characterization of (1)E  without this condition and Mailath and Samuelson [2006] for a 

review of much of the related literature. 
8
 The diffusion case is more complicated because second-order terms are not negligible, so that the variance 

of the diffusion process does have an impact on the set ( )E r . 
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boundary of the equilibrium set only the Poisson process can be used to provide non-

tangential incentives, while both sorts of processes can be used to provide incentives on 

tangent hyperplanes.  Our analysis differs in allowing the underlying process to vary with 

the sampling length, and in considering diffusions whose variance is influenced by the 

players’ actions. Of course our analysis also differs in considering an example of games 

with a short-run player (so enforcement on tangent hyperplanes is not possible) as 

opposed to their treatment of  games with two long-run players. 

We should also acknowledge Hellwig and Schmidt’s [2002] study of the limits of 

discrete-time principal-agent games as the time period shrinks. Instead of assuming that 

the discrete-time games correspond to sampling a diffusion process at discrete intervals, 

Hellwig and Schmidt suppose that the discrete-time games have a multinomial signal 

structure that converges to a diffusion as the time period shrinks, and compare the 

resulting limits to Holmstrom and Milgrom’s analysis of the corresponding continuous-

time game,. Thus their work resembles our companion paper more than it does this one.       

2. The Repeated Commitment Game 

We consider repeated play of the two-person two-action stage game with payoff matrix 

 

 Player 2 

 L R 

+1 u ,0 u ,1 

 

Player 1 

-1 u ,0 u g+ ,-1 

 

     Table 2: Stage-Game Payoffs 

 

where u u<  and 0g > . In the stage game, player 2 plays L in every Nash equilibrium, 

so player 1’s static Nash equilibrium payoff is u , which is also the minmax payoff for 

player 1. Naturally player 1 would prefer that player 2 play R, but he can only induce 

player 2 to play R by avoiding playing –1. 

 At the end of each play of the stage game, players observe a public signal z ∈ �  

that depends only on the action taken by player 1; player 2’s action is publicly observed, 
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as is the outcome of a public randomizing device.
9
  The probability distribution of the 

public signal is 1( | )F z a . We assume that F  is either differentiable and strictly 

increasing, or that it corresponds to a discrete random variable. (When F  is strictly 

increasing we endow the real line with the Lebesgue sigma-algebra and suppose that 

strategies are Lebesgue measurable.)  In either case, let 1( | )f z a  denote the density 

function. We assume the monotone likelihood ratio condition that 

1 1( | 1)/ ( | 1)f z a f z a= − = +  is strictly increasing in z . This says that z  is “bad 

news” about player 1’s behavior in the sense that large z  means that player was probably 

playing –1, a reputation player 1 would like to avoid if he is to keep player 2 in the 

game.
10

 We assume also the availability of a public randomization device; the outcome of 

this device is observed at the start of each period, before actions are taken. 

Let τ  denote the length of the period. We suppose that player 1 is a long-run 

player with discount factor exp( )rδ τ= −  facing an infinite series of short-run 

opponents. We restrict attention to the set of perfect public equilibria, or PPE: these are 

strategy profiles for the repeated game in which (a) each player’s strategy depends only 

on the public information, and (b) no player wants to deviate at any public history.
11

 The 

most favorable perfect public equilibrium for LR is characterized
12

 by the largest value v  

that satisfies the constraints 

(C) 

1

1

(1 ) ( ) ( | 1)

(1 )( ) ( ) ( | 1)

( )

v u w z f z a dz

v u g w z f z a dz

v w z u

δ δ

δ δ

= − + = +

≥ − + + = −

≥ ≥

∫
∫  

                                                 
9
 Technically speaking the public information also includes the short-run player’s action, but  since public 

randomizations are available  we can restrict attention to strategies that ignore the past actions of the short-

run player, and obtain the same set of outcomes of  perfect public equilibria. To see this, observe that 

continuation payoffs can always be arranged by a public randomization between the best and worst 

equilibrium. If continuation payoffs depend on the play of the short-run player, the long-run player cares 

only about the expected value conditional on the signal of his own play. Since that expected value lies 

between the best and worst equilibrium, there is an equivalent equilibrium in which the continuation value 

is constant and equal to the conditional expected value. 
10

 Because player 1 has only two actions, this assumption is without loss of generality, as we can always re-

order the signals so that it is satisfied. 
11

 See Fudenberg and Tirole [1991] for a definition of this concept and an example of a non-public 

equilibrium in a game with public monitoring. 
12

 The arguments of Fudenberg and Levine [1983] or Abreu, Pearce and Stachetti [1990] can be adapted  to 

show that the set of PPE payoffs here is compact,  so the best equilibrium payoff is well-defined. 
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or v u=  if no solution exists. Notice that this formulation is possible only because the 

existence of a public randomizing device implies that any payoff ( )w z  between v  and u  

can be attained by randomizing between the two equilibria. Note that the second 

incentive constraint must hold with equality, since otherwise it would be possible to 

increase the punishment payoff w  while maintaining incentive compatibility, and by 

doing so increase utility on the equilibrium path. This is a simple extension to the case of 

a continuous signal of the result proven in Fudenberg and Levine [1994]. 

 Because of the monotone likelihood ratio condition, equilibria that give the long-

run player the maximum utility have a cut-point property, with fixed punishment 

occurring if the signal exceeds a threshold *z . In the case of a variable z  with a positive 

density this condition is quite straightforward; Levin [2003] and Sannikov-Skrzypacz 

[2005] prove the analogous result for games with two long-run players. When the 

distribution of z  has atoms, the argument is complicated by the fact that the threshold 

itself will typically be realized with positive probability. For this reason it is useful for a 

given threshold *z ∈ ℜ  to use public randomization to define a random variable *z�  that 

in the continuous case is equal to *z  and in the discrete case picks the two grid points 

* *z z<  just below and above *z , with probability ( * *)/( * *)z z z z− −  of picking 

*z .  After the signal z is observed, and before play in the next period, the public 

randomizing device is used to determine whether z is compared to cutoff *z  or cutoff 

*z . 

Lemma 1: A solution to the LP problem characterizing the most favorable perfect public 

equilibrium for the long-run player with the continuation payoffs ( )w z  is given by 

 
*

( )
*

u z z
w z

v z z

 ≥=  <

�

�
. 

  

Proof: Let ( )w z  be a solution to the LP problem, and let  

 1( ) ( | 1)W w z f z a dz= = −∫  

Clearly ( )w z  must also solve the problem of maximizing  
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 1( ) ( | 1)w z f z a dz= +∫  

subject to 

 
1( ) ( | 1)

( )

w z f z a dz W

v w z u

= − ≤

≥ ≥
∫  

Ignoring for a moment the second set of constraints, and letting ν  be the Lagrange 

multiplier on the first constraint, the derivative of the Lagrangean is 

 1 1( )[ ( | 1) ( | 1)]w z f z a f z a dzν= + − = −∫ . 

By the monotone likelihood ratio condition, there is a *z  such that  

 1

1

( | 1)
 or < 

( | 1)

f z a

f z a
ν

= +
>

= −
 

as *, *z z z z< > , and in the continuous case there is a unique *z  for which the 

condition holds with equality. 

 This now shows that for *z z<  we must have ( )w z v=  and for *z z>  we 

must have ( )w z u= . That leaves the case *z z=  when z  is discrete. Since in that case 

( *)u w z v≤ ≤  can be realized by a public randomization between ,u v , we may use the 

*z�  construction for some appropriately chosen *z . 

� 

 

In the continuous case, we can now define 

 1 1
* *
( | 1) , ( | 1)

z z
p f z a dz q f z a dz

∞ ∞
= = + = = −∫ ∫  

to be the probability of punishment conditional on each of the two actions. In the discrete 

case, we can make a similar definition, taking account of the public randomization 

implicit in *z� .  

Consider, then, the LP problem of maximizing v  subject to the simplified 

constraints 
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(C ' ) 

(1 ) ( ( ))

(1 )( ) ( ( ))

0 , 1

v u v p v w

v u g v q v w

u w v

p q

δ δ

δ δ

= − + − −

= − + + − −

≤ ≤

≤ ≤

 

Let the solution to this be *v  or *v u=  if no solution exists.
13

 Choosing the 

cutoff point *z  which leads to the largest solution of this optimization problem then 

characterizes the most favorable perfect public equilibrium for the long-run player; we 

know also that in this optimal solution w u= . Manipulating the first two lines of system 

(C ' ) shows that (1 ) ( )( )g q p v wδ δ− = − − , and plugging this into the first line of (C ' )  

shows that if a solution exists, its value is   

 
pg

v u
q p

= −
−

.   

So we conclude that the highest equilibrium payoff is  

 

(1) * max{ , }
pg

v u u
q p

= −
−

. 

Note that this converges to the first best as /( ) 0p q p− → . It remains to determine when 

a solution to C '  exists. Substitution into the equation for w  shows that  

 

 
(1 )pg g

w u
q p q p

δ

δ

−
= − −

− −
. 

This payoff is feasible if it is at least u , which is equivalent to  

 

(2) 
( ) ( ) (1 )

1
u u q p

g p p

δ

δ

− − −
− ≥ . 

Moreover, because 1δ < , when (2) is satisfied, we have  

 
( ) ( )

1
u u q p

g p

− −
> ,  

which implies that 

                                                 
13

 Here we use the fact that the incentive constraint is binding at the optimum, this is why the second line is 

an equality and not an inequality. 
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 * pg
v u u

q p
= − >

−
. 

This proves the following result: 

Corollary 2: For a fixed discount factor δ , there is an equilibrium with the long-run 

player’s payoff above u  if and only if there are , [0,1]p q ∈  that satisfy (2). If such ( , )p q  

exist for a given δ , they exist for all 'δ δ> . 

Inspecting (1) and (2) shows that the highest equilibrium payoff is obtained by 

choosing *z  to maximize the “signal to noise” ratio  

 
q p

p

−
  

subject to the constraint that (2) is satisfied. In games with a finite set of signals, the 

likelihood ratio is obviously finite for any cut-off such that 0p > , so the best 

equilibrium payoff is bounded away from the first best irrespective of δ . This need not 

be the case when the set of signals is infinite. Indeed, as noted by Mirrlees [1974], this 

likelihood ratio can become infinite when the signals are normally distributed with a 

fixed variance and mean that depends on action. In the static principal-agent problem 

Mirrlees considered, the set of transfers was unbounded, so the fact that the signal to 

noise ratio can be made arbitrarily large implied that the first-best outcome can be 

approximated arbitrarily closely. In our setting, in contrast, because of the bound on the 

continuation payoffs, the first best can not be approximated arbitrarily closely for any 

fixed 1δ < , but it can be approximated in the limit as 1δ → . Intuitively, as 1δ → , the 

bounds on continuation payoffs become unimportant, because even a small change in 

continuation payoff outweighs any one period gain.  We say more about the case of 

unbounded signal to noise ratios and the normal distribution in section 4.  

3: Sending the Time Interval to Zero 

 Our interest is in how the set of PPE payoffs varies with the period length, and in 

particular its behavior as the time period shrinks to zero, because we want to relate this 

limit to the predictions of various continuous-time models. To facilitate taking the 

continuous-time limit, we substitute re τ−  into (2) and rearrange terms, to obtain  
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(3) 
1 ( )( )re q p u u p

g

τ

τ τ τ

− − −
≤ − . 

Let p  and q  be functions of τ  such that ( )p τ  and ( )q τ  satisfy (3) for each τ ; we say 

that p  and q  are regular if the limits 0lim ( ( ) ( ))/ ( )q p pτρ τ τ τ→= −  and 

0lim ( ( ) ( ))/q pτµ τ τ τ→= −  exist. The first limit ρ  can be thought of as the limit of the 

signal to noise ratio, since q p−  is a measure of how different the distribution of 

outcomes is under the two different actions, and p  is a measure of how often the 

“punishment” signal arrives when in fact the long-run player has been well-behaved. The 

second limit µ  is a measure of the difference between the bad news signal arrival rate 

over the good news rate. When p and q are regular, the limit of the right-hand-side of (3) 

exists, resulting in the limit inequality  

 

(4) ( )( / ) (( )/ ) 1r u u gµ ρ ρ≤ − −   

and moreover  

(5) 0 0
( )

lim * lim
( ) ( )

gp g
v u u

q p
τ τ

τ

τ τ ρ
→ →= − = −

−
.  

     Now fix regular functions( , )p q . If there exists positive ,rτ  and ε  such that 

for all non-negative smaller values 0 ,0 r rτ τ< < < <  the game with period length 

τ  and interest rate r  has an equilibrium with punishment probabilities ( )p τ  and ( )q τ  

with payoff at least u ε+ , we say ( , )p q  supports a non-trivial limit equilibrium. If for 

all ( , ) (0,0)rτ →  there are equilibria with punishment probabilities ( )p τ  and ( )q τ  that 

have payoffs converging to u , we say that ( , )p q supports an efficient patient 

equilibrium. We say that there is a non-trivial or efficient limit if there is a regular ( , )p q  

that supports it.  

 Note that the definition of a non-trivial limit equilibrium requires the payoff in 

question to be supportable as an equilibrium when the interest rate r is held fixed as the 

period length τ  goes to 0.  The definition of an efficient patient equilibrium requires the 

interest rate to go to 0 as well. However the efficient payoff must be attained in the limit 

regardless of the relative rates at which τ  and r  converge, so that in particular efficiency 

must be obtained if we first send τ  to 0 with r  fixed and only then decrease r . The other 
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order of limits, with r  becoming small for fixed τ , corresponds to the usual folk-

theorem analysis in discrete-time games. 

Proposition 1: Regular ( , )p q  support a non-trivial limit equilibrium if /( )g u uρ > −  

and 0µ > ; it supports an efficient limit equilibrium if ρ = ∞  and 0µ > . Conversely, 

there is a non-trivial limit equilibrium only if there is a ( , )p q with /( )g u uρ > −  and 

0µ > , and there is an efficient patient equilibrium only if there is a regular ( , )p q  with 

ρ = ∞  and 0µ > . 

Proof: If /( )g u uρ > −  and 0µ > , then the right hand side of (4) is strictly positive, 

so we can find 0r >  such that (4) is satisfied for all sufficiently small τ  and all r r< .  

If ρ = ∞  and 0µ > , then (4) is positive for small r, and moreover from (5) the 

corresponding limit payoff is efficient.  

 Conversely, if( , )p q  is regular and either /( )g u uρ ≤ −  or 0µ = , the right-

hand side of (4) is non-positive, and so for any fixed positive r (4) must be violated for τ  

sufficiently small, so there cannot be an equilibrium with payoffs above u . Finally, if 

0µ >  and ρ < ∞  then from (5) the limit payoff cannot be efficient, *v u>  and (3) is 

satisfied for τ  sufficiently large. From (1) *v u> , and then (3) is positive if 0µ > . 

Moreover, from (2) *v u=  if and only if ρ = ∞ . 

� 

 

The proof of Proposition 1 does not use the fact that the optimal equilibrium has 

continuation payoff u  after bad signals: For the existence of non-trivial limit equilibria, it 

is necessary and sufficient that /( )g u uρ > −  and 0µ >  for some family of cut-point 

equilibria. Of course the conditions are also necessary and sufficient for limits of families 

of optimal equilibria. Note that Proposition 1’s sufficient condition for a non-trivial limit 

equilibrium is an extension of Proposition 2 of AMP, which applies only to the case of 

sampling from a fixed Poisson distribution that we study in the next section.
14

. 

Restricting to these equilibria gives a useful lemma that makes it easier to check 

the conditions of Proposition 1. 

 

                                                 
14

 Their result covers only pure strategy equilibria, and has no condition on µ , which is implicitly assumed 

to be positive. 
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Lemma 3: Suppose that the interest rate ( )r τ  depends on the period length. If 

( ( ), ( ))p qτ τ  are optimal non-trivial equilibria for ( , ( ))rτ τ  and 

0lim ( ( ) ( ))/ ( )q p pτρ τ τ τ→= − , 0lim ( ( ) ( ))/q pτµ τ τ τ→= − , 0lim ( )r rτ τ→=  and 

* *lim ( )v v τ=  exist, then * */ ( )/( )r u v v uµ ρ = − − . 

Proof: Substituting w u=  into the equation for the equilibrium payoff in the first line of 

'C  we have 

 [ ]* ( ) (1 ) * ( ) ( )( * ( ) )v u v p v uτ δ δ τ τ τ= − + − − . 

This may be rearranged as 

 
( ) (1 ) * ( )

* ( )

r

r

p e u v

e v u

τ

τ

τ τ

τ τ τ

−

−
− −

=
−

. 

We can rewrite  

 
( )
( )
( ) ( ) /

( )/
( ) ( ) / ( )

q p
p

q p p

τ τ τ
τ τ

τ τ τ

−
=

−
 , 

so  

( )
( )
( ) ( ) / (1 ) * ( )

( ) ( ) / ( ) * ( )

r

r

q p e u v

q p p e v u

τ

τ

τ τ τ τ

τ τ τ τ τ

−

−
− − −

=
− −

 

and taking the limit 0τ →  gives the desired result. 

� 

 

Because a non-trivial limit equilibrium requires that the limit payoff exceeds u , lemma 1 

implies that 0/ lim ( )/pτµ ρ τ τ→=  must be finite, a fact we use below. Intuitively, if 

the optimal equilibria were to have 0lim ( )/pτ τ τ→ = ∞ , when τ  is small the 

probability of quickly reaching the punishment phase with a continuation payoff of u  is 

close to one. That implies that the equilibrium payoff is close to u .   

In applying Proposition 1 to a family of optimal equilibria ( ( ), ( ))p qτ τ  

corresponding to the game with period length and interest rate ( , ( ))rτ τ , it is possible that 

this family is not regular. In this case, we can restrict attention to a sequence of optimal 

equilibria that are regular, that is, along a subsequence nτ  for which  

0lim ( ( ) ( ))/ ( )n
n n nq p pτ τ τ τ→ −  and 0lim ( ( ) ( ))/n

n n nq pτ τ τ τ→ −  do converge. For 
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notational simplicity we have stated our results for the case in which the optimal  

equilibria are regular, but they apply equally well to subsequences that are regular.  

4. Fixed-Intensity Poisson Signals  

In this section we suppose that the public signal of the long-run player’s action is 

generated by observing a Poisson process in continuous time. The players simultaneously 

observe the result of this process every τ  units of time, and the process is held fixed as 

the time period becomes small. This means that the probability of two or more events in a 

time interval is second order in τ .  

The arrival rate of the Poisson process is pλ  if the action taken by LR is +1 and 

qλ  if the action taken by LR is  –1. As in Abreu, Milgrom and Pearce’s [1991] analysis 

of a partnership game with two long-run players, a critical role is played by whether the 

Poisson event is good news – meaning that the long-run player probably played the 

commitment action +1, or bad news, meaning he probably deviated to –1. If q pλ λ>  the 

event is “bad news.”  In this case we take random variable z  to be the non-negative 

discrete random variable representing the number of events that occurred during the 

previous interval of length τ . If q pλ λ<  the event is “good news.” In this case we take 

the random variable z  to be the non-positive discrete random variable representing the 

negative of the number of events received during the previous interval of length τ . In 

this way we preserve the convention that high z  is bad news. As in Abreu, Milgrom and 

Pearce [1991], we will show that we get a non-trivial limit equilibrium in the bad news 

case, but not in the good news case.  

To begin we analyze the case of bad-news events q pλ λ> .  The cutoff point is 

how many events must occur before the punishment v w−  is triggered. If we take the 

cutoff to be two or more events, then the probability of triggering punishment is of order 

2τ ; this implies that 0lim ( ( ) ( ))/q pτµ τ τ τ→= −  is equal to 0, which from lemma 1 

rules out a non-trivial limit equilibrium.  

So the only interesting cutoff is to punish whenever any event is received. 

Consider the suboptimal rule in which punishment occurs with probability α  when one 

or more events occur, independent of the period length. The probability of one or more 

events is ( ) 1 ,  or ( ) 1p qp e q e
λ τ λ ττ τ− −= − = − , as the long-run player plays –1 or +1. 

We may then directly compute 
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( )/ ( )/   and q p p q p p q pρ α λ λ αλ λ λ λ µ λ λ= − = − = − . Hence the condition for a 

non-trivial limit equilibrium is ( )/  /( )q p p g u uρ λ λ λ= − > − , and the best limit 

equilibrium payoff is * /( )p q pv u gλ λ λ= − − , as shown by Proposition 2 of APM.
15

 

The significant feature of this solution is that it is independent of the payoff u .  

 Now we analyze the case of “good news” events q pλ λ< . Here the punishment 

is triggered by a small number of events, rather than a large number. If there is to be any 

punishment at all, then punishment must certainly occur when no event occurs. Suppose 

the probability of punishment when there is no event is ( )γ τ . Then 

( ) ( ) , ( ) ( )p qp e q eλ τ λ ττ γ τ τ γ τ− −= = . Regardless of ( )γ τ  this implies 0ρ = . 

As we observed in the introduction, the fact that one player is short run means that 

providing incentives to the long-run player has a non-trivial efficiency cost. In the case of 

“good news” events, providing incentives requires frequent punishment, but if there are  

many independent and non-trivial chances of  a non-trivial punishment in a small interval 

of real time, the long run player’s present value must be so low that it is impossible to 

improve on the static equilibrium.  In contrast, there can be non-trivial equilibrium even 

in the limit when the signal used for punishment has negligible probability (as in the case 

of bad-news events) or if there are several long run players so that punishments can take 

the form of efficient transfers. 

5. Diffusion Signals With Common Variance 

Faingold and Sannikov [2005] study the case where signals about the action of the 

long-run player are generated by a diffusion process in continuous time, with the drift in 

the process controlled by the long-run player’s action.  In this section, we suppose that 

the players observe the underlying process at intervals of length τ , as in Sannikov and 

Skryzpacz [2005], who study repeated games with two long run players.
16

  To do this, we 

apply Proposition 3, and consider a slight generalization of the diffusion assumption: we 

                                                 
15

 Because the probability of having more than a single event vanishes at rate 2τ , the limit equilibrium 

payoff * /( )p q pv u gλ λ λ= − −  computed from this sub-optimal rule is the same as the payoff computed 

assuming certain punishment whenever there are two or more events.  We could also allow α  to depend on 

the period length without changing our conclusions. 
16

 Thus our approach differs from that of Hellwig and Schmidt [2002], which constructs the limit diffusion 

process and limit continuous time game as the limit of discrete-time games with multinomial signals, and 

the signal process and payoff functions are rescaled in the appropriate way as 0τ → .  
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allow the variance of the signal z  to be given by 2 2ασ τ  where 1α < , so that the 

diffusion case corresponds to 1/2α = . The mean of the process is  1a τ−  (recall that 

1a = +1 or –1).   

Observe that if Φ  is the standard normal cumulative distribution, then  

 

*

*

z
p

z
q

α

α

τ

στ

τ

στ

− − = Φ   
− + = Φ   

 

We show below that there is no sequence of cutoffs that supports a non-trivial limit 

equilibrium. Before doing so, we examine a simpler result that that provides intuition for 

the general one – it is not possible to support a non-trivial limit when the probability p  of 

punishment along the equilibrium path is held fixed as 0τ → . 

Let * ( )z τ  denote the cutoff when the period length is τ , and define the 

normalized cutoff  

 
* ( )

( )
z
α

τ τ
ζ τ

στ

+
=  

Then  

( )
1

( )

2
( )

p

q
α

ζ τ

τ
ζ τ

σ

−

= Φ −

 = Φ −   

. 

If p  is held fixed, then 1( )pζ −= −Φ  is fixed as well, and   

 ( ) ( )
1

0 0
2

lim ( )/ lim ) / ) 0q p p
α

τ τ

τ
ρ ζ ζ ζ

σ

−

→ →
     = − = Φ − −Φ − Φ − =        

.  

From Proposition 1, this sequence cannot support a non-trivial limit equilibrium. 

Of course this does not show that there are not non-trivial limits for all sequences 

of cut-offs, In particular, it is always possible to find a series of cut-offs such that 

ρ = ∞ , by sending the normalized cutoff to ∞ . However, in contrast to the principal-

agent problem considered by Mirrlees, rewards and punishments in our model are 

bounded, so ρ = ∞  is not sufficient for a non-trivial limit equilibrium;  we also need to 

ensure that 0µ > , so that the increase in punishment caused by cheating vanishes no 

faster than the period length.  We will show that the combination of these two conditions 
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is only possible if α  is (at least) one; a similar result for the case 1/2α =  can be found 

in Sannikov and Skrzypacz [2005].  

Proposition 2: For any 1α < there is no non-trivial limit equilibrium.  

Proof:  We will show that for τ  sufficiently small, (3) is necessarily violated.
17

 

 Let * ( )z τ  denote the cutoff when the period length is τ . It is convenient to work with 

the normalized cutoff  ( )ζ τ  defined above. From Proposition 2, if there is to be a non-

trivial limit equilibrium, we must have 0lim ( ( ) ( ))/ ( ) 0n
n n nq p pτρ τ τ τ→= − >  and 

0µ > , and this second inequality requires that ( )/q p τ−  is bounded away from zero. 

We will show that this implies that / lim ( )/pµ ρ τ τ= = ∞ , which contradicts Lemma 

1.   

  Let  'φ = Φ  denotes the density of the standard normal. First we compute 

( )/q p τ−  using the mean value theorem to observe that for each τ  there is a number 

( )f τ , 0 ( ) 1f τ≤ ≤ , such that 

 

( )

1

1

2
( ) ( ( )) /

2 2
( ) ( )

q p

f

α

α

α

τ
ζ τ ζ τ τ

τ σ

τ
φ ζ τ τ

στ σ

−

−

   −   = Φ − −Φ −        
 = − +   

 

Let ( ) ( )/c q pτ τ= − . We can invert this relationship to find 

 

1

21

21

1

2
( ) ( ) ( ) /2

1 1 2
exp( ( ) ( ) ) ( ) /2

22

2
( ) ( ) 2 log( 2 ( ) /2) 2 log( )

2
( ) 2 log( 2 ( ) /2) 2 log( ) ( )

f c

f c

f c

c f

α
α

α
α

α

α

τ
φ ζ τ τ τ στ

σ

τ
ζ τ τ τ στ

σπ

τ
ζ τ τ π τ σ α τ

σ

τ
ζ τ π τ σ α τ τ

σ

−

−

−

−

 − + =  

 − − + =  

 − + = − −  

= − − +

 

We now want to use this to show that /p τ → ∞ . Since we have assumed that ( )c τ  is 

bounded away from zero, 1( ) log 2 logb a αζ τ α τ τ −≤ − − + . This gives 

                                                 
17

 Note the difference with the result of Muller [2000], who observes that the principal can implement the 

first best in a discrete-time repeated moral hazard problem with diffusion signals. The difference stems 

from the fact that Muller allows unbounded rewards, while the feasible payoffs here are bounded above and 

below. 
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1/ ( log 2 log )/p b a ατ α τ τ τ−≥ Φ − − − − .  We now apply the mean value theorem to 

the function  1( ) ( log 2 log ) /g b a
ατ α τ τ τ−= Φ − − − − , where we define (0) 0g = .

18
 

Again using the mean value theorem we know that for some ' [0, ]τ τ∈ , we have 

 
( )

1

1

1 2 2 2

1/2

( log 2 log )/

(1 )( ') ( log 2 log ' ( ') )
' log 2 log '

1
(1 )( ')

2 ' log 2 log '

exp( 1/2) log 2 log ' 2 ( ') log 2 log ' ( ')

2 '

b a

a b a
b

a
b

b a b a

b

α

α α

α

α α

α τ τ τ

α
α τ φ α τ τ

τ α τ

α
α τ

π τ α τ

α τ τ α τ τ

α

π τ

−

− −

−

− −

Φ − − − −

 = − − − − − −  − −
 = − −   − −

× − − − + − − +

=

( )

( )

1 2 2 2

1/2 1

1 2 2 2

(1 )( ')
log 2 log '

( ') exp( ( ') log 2 log ' exp( 1/2) ( ')

( ')
(1 )

2 log 2 log '

(exp( ( ') log 2 log ' exp( 1/2) ( ') .

a
b

a b a

b
a

b

a b a

α

α α α

α

α α

α τ
α τ

τ τ α τ τ

α τ
α

π α τ

τ α τ τ

−

− −

−

− −

  − −   − −

× − − − −

 = − −   − − 

× − − − −

 

Denote the expression in the last step of this series of equalities by ( ')J τ ; this has the 

form 
1

( ( ') )exp ( ')
( ')

k x y
x

τ γ τ
τ

 − −   
, where  

1'
( ')

log 2 log '
x

b

ατ
τ

α τ

−
=
− −

, (1 )aγ α= − , 

and ( )2 2 2( ') exp( 1/ 2) ( ') 1y a ατ τ −= − → .  As ' 0τ → , log( ')τ− diverges to infinity more 

slowly than any fixed negative power of 'τ  so ( ')x τ → ∞ , so ( ')J τ → ∞  and thus 

/p τ → ∞  

� 

 Notice that in the limit for 1α <  the equilibrium collapses to the static Nash; in 

particular this is true even when 1/2α > , so that the process converges to a 

deterministic one. By way of contrast, the “bad news” Poisson case, which like the 

diffusion case corresponds to 1/2α = , does not collapse in the limit. This shows that 

the exact form of the noise matters: is it a series of unlikely negative events, as in the 

“bad news” Poisson case, or a sum of small increments as in the normal case? 

                                                 
18

  We can apply the mean value theorem here because g is continuous on the closed interval [0, ]τ  and 

differentiable on its interior. 
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 It is useful to contrast the diffusion case 1/2α =  to the case 1α = , where the 

mean and the standard error are both of order τ .  When we take the limit of such a 

sequence of processes, the limit is a deterministic process without noise. 

Proposition 3:  If 1α =  there is an efficient patient equilibrium.  

Proof:  From Proposition 1, it is enough to find functions ,p q  that satisfy (3) and such 

that ρ = ∞  and 0µ > . As in the proof of Proposition 2, it is convenient to work with 

the normalized cutoff  

 
1 * ( )/

( )
z τ τ

ζ τ
σ

+
= ,  

Then  

 

( )

( )
( )

2
( )

p

q

ζ τ

ζ τ
σ

= Φ −

= Φ −
. 

Observe then that if ( )ζ τ → ∞  then as in Mirrlees [1974] the likelihood ratio 

( )/ ( )q pτ τ → ∞  implying that ρ = ∞ . Moreover if we take  

 ( ) log(1/ )ζ τ τ=  

then 

 

[ ]2( )

2

log(1/ )

( ) ( )
lim

2 ( ( )) 2
lim lim

2

2 2
lim 0

2 2

q p

e

e

ζ τ

τ

τ τ
µ

τ

φ ζ τ

στ τσ π

τσ π σ π

−
−

−

−
=

−
≥ =

= = >

 

as required in Proposition 1. 

� 

 

6. Diffusion Signals with Unequal Variances  

In the previous section, we followed Faingold and Sannikov [2005] by assuming 

that the instantaneous variance of the diffusion process was independent of the action 
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taken. We now look at the opposite case. We assume that the over an interval of length τ  

the signals have variance 2
1σ τ+  or 2

1σ τ−  as the action chosen is either 1a = +1 or –1;  the 

means are still  1µ τ+  and 1µ τ− . With unequal variances, the monotone likelihood ratio 

condition necessarily fails. However, we will show below, that the optimum is to have 

two cutoff-points, rather than one. In other words, the relevant cutoff rules are of the form 

( ), ( )z zτ τ , together with strategies that treat signals that are extreme ( ), ( )z z z zτ τ< >  

in one way, and signals that are intermediate ( ) ( )z z zτ τ≤ ≤  the other way. 

In what follows, it will generally be useful to define the normalized cutoffs 

 1
1/2

1

( )
( )

z τ µ τ
ζ τ

σ τ

+

+

−
=  and 1

1/2
1

( )
( )

z τ µ τ
ζ τ

σ τ

+

+

−
=  

together with the regions ( ), ( )zζ ζ τ ζ τ< >  and ( ) ( )ζ τ ζ ζ τ≤ ≤ . This gives rise also 

to the inverse relations 

 1/2
1 1( ) ( )zσ τ ζ τ µ τ τ+ ++ =  

 1/2
1 1( ) ( )zσ τ ζ τ µ τ τ+ ++ = . 

 6a)  Extreme values are bad news: 1 1σ σ− +> . 

We will show that in this case there is an efficient patient equilibrium. Here 

punishment should occur whenever the realized value of the signal z is extreme. To prove 

that there is an efficient patient equilibrium, we do not need to compute the optimal 

cutoff rule; we simply need to find a cutoff rule that supports equilibrium payoffs that are 

arbitrarily close to efficiency. To do this we fix a positive number *ζ  and consider the 

cutoff rule * *( ) , ( )ζ τ ζ ζ τ ζ= − = , which implies that 1/ 2 *
1 1( )z τ σ τ ζ µ τ+ += − +  and 

1/ 2 *
1 1( )z τ σ τ ζ µ τ+ += + . Note that this cutoff rule is symmetric around the mean of 

the +1 action, and that the normalized cut-offs are independent of τ . Then the probability 

of punishment under action +1 is ( )* *2p = Φ −ζ , and the probability of punishment 

under action -1 is  
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1 1
1/2 1/2

1 1

1 1
1/2 1/2

1 1

1/2 * 1/2 *
1 1 1 1 1 1

1/2 1/2
1 1

( ) ( )
( ) 1

( ) ( )

z z
q

z z

− −

− −

− −

− −

+ + − + − +

− −

   − −  = Φ + −Φ       

   − − +  = Φ + Φ       
   − + − − + −  = Φ + Φ        

→

τ µ τ τ µ τ
τ

σ τ σ τ

τ µ τ τ µ τ

σ τ σ τ

σ τ ζ µ τ µ τ σ τ ζ µ τ µ τ

σ τ σ τ

1 * *

1
2 q+

−

 Φ − ≡  
σ
ζ

σ

  

 

 

This shows that the effect of the actions on the means has vanishing impact on the 

punishment probability, essentially because the means under the two actions are 

converging at rate τ  while the standard deviations only converge at rate 1/2τ . 

Proposition 4: If 1 1/ 1σ σ− + >  then  for any interest rate there are equilibria whose 

payoffs are arbitrarily close to efficiency. 

 

Proof: Set  

 
( )*

1 *

1

( *)
ζ

κ ζ
σ

ζ
σ
+

−

Φ −
=
     Φ −        

. 

Then (0) 1κ = , and using L’Hopital’s rule we have that 

  

2

*
1

1 *1

1

*
1

2
1 1 *2

1

2
1 1 *2

1 1

( )
lim ( ) lim

exp( /2)
lim

exp /2

lim exp 1

ζ ζ

ζ

ζ

σ φ ζ
κ ζ

σσ
φ ζ

σ

σ ζ

σ σ
ζ

σ

σ σ
ζ

σ σ

−
→∞ →∞

++

−

−
→∞

+ +

−

− +
→∞

+ −

  −=          −        

  −=         −       

         = − −           
0

 =  

 

Hence by taking *ζ  sufficiently large we can make ( *)κ ζ  arbitrarily close to 0. 

With these trigger strategies, the payoffs converge to   
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* *

* *

/

1 /

gp q
v u

p q
= −

−
. 

This is more than u  whenever ( *)κ ζ  is sufficiently small, so (1) is satisfied; moreover it 

converges to u  as 0κ → . 

 From Corollary 1, the other condition for equilibrium is    

 * *( )
( ( )/ 1) 1 1ru u

p q p e
g

ττ
 −  − − > −  

. 

Observe that  ( )/ *q pτ  converges to 1/κ  so for small enough κ  this inequality will 

hold for all sufficiently small τ .    

� 

6b) Extreme values are good news: 1 1σ σ+ −> . 

 In this case we have two results, one positive and one negative. We begin with the 

positive result, which is simpler, because we can prove it using the same cutoff rule we 

used above ( ) *, ( ) *ζ τ ζ ζ τ ζ= − = . 

Proposition 5: For any fixed r  there is a 1λ >  such that if 1 1/σ σ λ+ − >  there is a 

non-trivial limit equilibrium. Moreover, as λ → ∞ , the best limit payoff converges to 

the first best. 

Proof:  Set ( )
1

g
v u

κ
κ

κ
= −

−
, and set 

u u

u u g
κ

−
=

− +
; note that ( )v uκ >  exactly 

when κ κ>  and that 0lim ( )v uκ κ→ = .  Set  

 
( )

1

1

( ) 1 2
( )

( ) 1 2

G

G

p

q

ζ ζ
κ ζ

σζ
ζ

σ
+

−

− Φ −
= =

     − Φ −        

.   

Then  from l’Hopital’s rule  

 1

1

(0) 1
σ

κ
σ
−

+
= <   

and κ  is monotone increasing, with lim ( ) 1ζ κ ζ→∞ = . Thus we can set 1/λ κ=  , and 

whenever 1 1/σ σ λ+ − > ,  there will be a ζ  such that ( )κ ζ κ< . In this case we claim 
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that there is an equilibrium with cutoff ζ  and payoff ( ( ))v κ ζ  for all τ  less than some 

0τ > . 

 To see this, note that with these strategies the payoff is  

 
( )

( ) ( )

G

G

p g
v u u

q p

ζ

ζ ζ
= − >

−
,  

so (1) is satisfied by construction. From Corollary 1, the other condition for equilibrium 

is    

 
( )

( ) 1ru u
q p p e

g
τ−

− − > − . 

Because p and q are held fixed independent of τ , and the left-hand side of this inequality 

is positive, the inequality will hold for all sufficiently small τ . 

Finally, note that as λ → ∞ , (0) 0κ → , so sending  ζ  to 0 as τ  goes to 0 

results in payoffs that converge to the first best.     

� 

For the next result we need to consider the optimal equilibria.  

Lemma 4: The optimal policy is determined by a number ( )B τ such that 

 ( ) ( )2 2 2 1/2
1 1 1 1 12 ( ) 0Bσ σ ζ µ µ σ τ ζ τ+ − − + +− + − + =  

has two real roots ( ) ( )ζ τ ζ τ<  and the policy of punishing when ( ) ( )ζ τ ζ ζ τ≤ ≤ . 

Proof: Recall from the proof of Lemma 1, prior to the use of the MLRP condition, that 

the optimal strategy must maximize the Lagrangean  

 1 1( )[ ( | 1) ( | 1)]w z f z a f z a dzν= + − = −∫ . 

In other words, ( )w z  must be minimized (punishment) when 

1 1( | 1) ( | 1)f z a f z aν= + − = −  is negative, and take on the maximum value of v  

when this expression is positive. So the punishment region is bounded by critical values 

of z  where 

 

2
1
2
1

2
1
2
1

( )1

2

1

1( )

2

1

1

2

1

2

z

z

e

e

µ τ

σ τ

µ τ

σ τ

πτσ
ν

πτσ

+

+

−

−

− −
−

+
− −

−

−

=  
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Taking logs, this becomes the quadratic 

 12 2 2 2 2 2
1 1 1 1 1 1

1

( ) ( ) 2 logz z
σ

σ µ τ σ µ τ τσ σ ν
σ
+

+ − − + + −
−

 − − − − − =   
. 

Substituting the normalization 

 1/2
1 1( )z σ τ ζ τ µ τ+ +− = − +  

then gives 

 ( ) 11/2 2 2 2 2
1 1 1 1 1

1

( ) 2 log /
σ

ζσ µ µ τ σ ζ σ ν τ
σ
+

+ − + − −
−

 − − − − =   
. 

� 

 

Since large observations are good news, punishment occurs when observations 

take on intermediate values so 

  ( ) ( )( ) ( ) ( )p τ ζ τ ζ τ= Φ −Φ  

and 

  

1 1
1/2 1/2

1 1

1/21/2
1 1 11 1 1

1/2 1/2
1 1

( ) ( )
( )

( )( )

z z
q

τ µ τ τ µ τ
τ

σ τ σ τ

σ τ ζ τ µ τ µ τσ τ ζ τ µ τ µ τ

σ τ σ τ

− −

− −

+ + −+ + −

− −

   − −  = Φ −Φ       
   + −+ −  = Φ −Φ      

 

Proposition 6: a) There is a 1λ >  such that if 1 11 /σ σ λ+ −< <  there is no non-

trivial limit equilibrium. 

  b) If 1 1/ 1σ σ+ − >  there is no efficient patient equilibrium. 

 

Proof: Suppose there is a non-trivial equilibrium; then as we indicated in the discussion 

after Lemma 1, we know that ( ) 0p τ →  and since ( ) ( )( ) ( ) ( ) 0p τ ζ τ ζ τ= Φ − −Φ − → , 

it follows that ( ) ( ) 0ζ τ ζ τ− → . From the quadratic formula and Lemma 8, we can 

compute 

 1 1 1 1/2
2 2
1 1

2( )
( ) ( )

µ µ σ
ζ τ τ ζ τ

σ σ

− + +

+ −

−
= − −

−
, 
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from which it follows that ( ) ( ) 0ζ τ ζ τ+ → , so we conclude that ( ), ( ) 0ζ τ ζ τ → . 

Now we calculate ρ  

( ) ( )( )

( ) ( )

0

1/21/2
1 1 11 1 1

1/2 1/2
1 1

lim

( )( )
( ) ( )

( ) ( )

τρ

σ τ ζ τ µ τ µ τσ τ ζ τ µ τ µ τ
ζ τ ζ τ

σ τ σ τ

ζ τ ζ τ

→

+ + −+ + −

− −

=

   + −+ −  Φ −Φ − Φ −Φ      
Φ −Φ

 

By the mean value theorem, we can find ( ) * ( ), * *( ) ( )ζ τ ζ τ ζ τ ζ τ≤ ≤  such that 

 

( )

( )

1/2
1 1 1 1

1/2
11

0

1 1

1

* *( )
( ) ( )

lim 1
( * ( )) ( ) ( )

τ

σ τ ζ τ µ τ µ τ σ
φ ζ τ ζ τ

σσ τ
ρ

φ ζ τ ζ τ ζ τ

σ σ

σ

+ + − +

−−
→

+ −

−

 + −  −  
= −

−
−

=

, 

where the final step follows from ( ), ( ) 0ζ τ ζ τ → , implying * ( ), * *( ) 0ζ τ ζ τ → . So 

we conclude that there is no efficient patient equilibrium, and that there is no non-trivial 

limit if  

 1 1

1

/( )g u u
σ σ

ρ
σ

+ −

−

−
= ≤ − . 

� 

 

7. Conclusion 

 To recapitulate our conclusions, we repeat Table 1’s description of the most 

efficient limit equilibria:  
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 Poisson Diffusion Diffusion, constant variance  

Bad News Non-trivial Efficient Trivial 

Good News Trivial Non-trivial Trivial 

  

Notice that with the exception of the constant-variance knife-edge, the most efficient 

equilibrium is more efficient if there are more events in a given time period (comparing 

Poisson vs. diffusion on a given row) and also more extreme signals are bad news. The 

first comparison is suggestive of a more general result about aggregation of signals being 

beneficial; this is a focus of the companion paper. Notice also that our approach here 

relies on the assumption that both agents simultaneously observe the state and revise  

their chosen action. The simultaneity allows us to use the techniques of discrete-time 

repeated games with publicly observed signals. It would be interesting to study the harder  

case where agents sample and revise at random times, and do not observe the times of the 

other agent’s revision opportunities; this would result in a game of imperfect and private 

monitoring.   
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