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Dynamics in Games
Ø Review of statics

Ø Equilibrium dynamics

Ø “disequilibrium dynamics:” learning and evolution

Ø convergence to equilibrium
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Nash Equilibrium Statics

Static Simultaneous Move Game
an N  player game i N= 1… , P S( )  are probability measure on S

finite strategy spaces, σi i iP S∈ ≡Σ ( )  are mixed strategies

s S Si
N

i∈ ≡ × =1  are the strategy profiles

σ ∈ ≡ × =Σ Σi
N

i1

other useful notation s S Si i j i j− − ≠∈ ≡ ×

σ− − ≠∈ ≡ ×i i j i jΣ Σ

u si ( )  payoff or utility

u u s si i j jj

N

s S
( ) ( ) ( )σ σ≡

=∈ ∏∑ 1
 is expected utility
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Nash Equilibrium
players correctly anticipate on another’s strategies

σ  is a Nash equilibrium profile if for each i N∈1,…
u ui i i ii

( ) max ( ' , )'σ σ σσ= −

Theorem:  a Nash equilibrium exists in a finite game

this is more or less why Kakutani’s fixed point theorem was invented

Bi ( )σ  is the set of best responses of i  to σ−i , and is UHC convex
valued

this is a very passive notion of equilibrium, which often causes
confusion
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Examples

Prisoner’s Dilemma Game

cooperate defect

cooperate 2,2 0,3

defect 3,0 1,1

a unique dominant strategy equilibrium (D,L)
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Matching Pennies

H T

H 1,-1 -1,1

T -1,1 1,-1

A unique mixed strategy equilibrium at 50-50
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Multiple equilibria

Pure Coordination Game: Driving on the Right or the Left
R L

R 1,1 0,0

L 0,0 1,1

three equilibria (R,R) (L,L) ((.5R,.5L),(.5R,.5L))

too many equilibria??
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Equilibrium Cycles

Drive on the right on Sundays; on the left during the rest of the week
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Dynamics in Economics

Cycles versus Stochastic Fluctuations

Growth of per capita Consumption
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Shiller

Growth of S&P
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http://www-
personal.buseco.monash.edu.au/~hyndman/TSDL/physics/star.dat

Magnitude of a Star
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chaos theory has done poorly in economics

economists learn from their mistakes – clever newcomers are very
good at repeating our old errors
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Disequilibrium Nash Adjustment

Expectational Error Adjustment
If we are not at a Nash equilibrium, someone has erroneous beliefs

Dynamics studied by economists are driven by error correction:
erroneous beliefs should be changed
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Matching Pennies

H T

H 1,-1 -1,1

T -1,1 1,-1

Ø Error driven cycles

Ø “cob-web”

Ø not many people would play this way…
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Population versus individual models

Individual model: specify the beliefs of each individual and how they
adjust beliefs and behavior

“learning model”

example: best-response dynamic – everyone plays best response to
previous periods play

population model: specify fraction of the population changing to a
“better strategy” based on some measure of population performance

example: replicator – strategies that are doing better than average
grow
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population and individual approaches are generally compatible: every
individual model gives rise to a population model, and most population
models are compatible with sensible individual behavior

it is possible to specify population models that don't make sense at the
individual level (genetic algorithms)
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Partial Adjustment

Best-response is too abrupt – consider the cob-web cycle

Ø Partial best-response: adjust in direction of improving payoff based
on previous period play

This has advantages in the population setting, because the state can be measure by
what people are doing in the current period.

Ø Fictitious play: play best response to a long-term average
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One-dimensional case

Two player, two action symmetric game

There is only one sensible dynamic: move in the direction of increasing
individual payoffs
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Driving game: 1 if agree, 0 if disagree
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Anti-driving game: get 1 if disagree, 0 if agree
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Multi-dimensional cycling: Shapley game, Jordan game

Shapley Game

0,0 1,2 2,1

2,1 0,0 1,2

1,2 2,1 0,0
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Jordan Game
Three player matching pennies; player 1 wants to match player 2, who
wants to match player 3 who wants to do the opposite of player 1
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“Classical” Case of Fictitious Play

Ø keep track of frequencies of opponents’ play

Ø begin with an initial or prior sample

Ø play a best-response to historical frequencies

Ø not well defined if there are ties, but for generic payoff/prior there will
be no ties
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Ø optimal procedure against i.i.d. opponents

Ø how well does fictitious play do if the i.i.d. assumption is wrong?
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How well can fictitious play do in the long-run?

Ø notice that fictitious play only keeps track of frequencies: can fictitious
play do as well in the long-run as if those frequencies (but not the
order of the sample) was known in advance?

Ø alternatively: suppose that a player is constrained to play the same
action in every period, so that he does not care about the order of
observations
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Universal Consistency

let ut
i  be actual utility at time t

let f t
i-  be frequency of opponents’ play (joint distribution over S i− )

suppose that for all (note that this does not say “for almost all”)
sequences of opponent play

lim inf ( / ) max ( , )T t
i

s

i i
T

i

t

T
T u u si→∞

−
=

− ≥∑1 0
1

φ

then the learning procedure is universally consistent
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Is fictitious play universally consistent? Fudenberg and Kreps example
– the anti-driving game

0,0 1,1

1,1 0,0

this coordination game is played by two identical players

suppose they use identical deterministic learning procedures

then they play UL or DR and get 0 in every period

this is not individually rational, let alone universally consistent
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Theorem [Monderer, Samet, Sela; Fudenberg, Levine]: fictitious play is
consistent provided the frequency with which the player switches
strategies goes to zero
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Smooth Fictitious Play

instead of maximizing u si i
t
i( , )f -1  maximize

u vi i
t
i i i( , ) ( )s f l s- +1

where vi  is smooth, concave and has derivatives that are unbounded at
the boundary of the unit simplex

example: the entropy

v s si i i i i i

si( ) ( ) log ( )s s s= -Â
as l Æ 0 this results in an approximate optimum to the original problem

however the solution to u vi i
t
i i i( , ) ( )s f l s- +1  is smooth and interior

(always puts positive weight on all pure strategies)
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• Theorem [Blackwell, Hannan, Fudenberg and Levine and others]:
smooth fictitious play is e  universally consistent with e Æ 0 as l Æ 0

Notice that these procedures is random

It must be: otherwise it can be defeated by a clever opponent

Think: matching pennies

But: Universal consistency is a long way from Nash Equilibrium…
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Complex Structure of Equilibria and
Computation of Equilibria

Ø Many isolated points or segments possibly separated by cycles

Ø Is is possible to define algorithms guaranteed to converge to a Nash
equilibrium (move directly to the closest equilibrium!)

Ø Algorithms for finding equilibria (Scarf, Global Newton) are not
decentralized

Ø Cycles aren’t believable

Ø Can the system wander around forever without a pattern so that
people are always confused? Note that chaotic systems are very
predictable in the short run.

Ø A global convergence theorem would be more plausible if the target
was geometrically simpler (for example, a convex set)
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Correlated Equilibrium

Definition
r  a probability distribution over S
i.e. may allow correlations

( )iu r  expected utility

( | )i isr− ⋅  conditional distribution of everyone else

( )i isr  marginal over player i

r  is a correlated equilibrium if ( ) 0i isr >  implies

( , ( | )) ( ', ( | ))i i i i i i i iu s s u s sr r− −⋅ ≥ ⋅
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Interpretation

Ø Nash equilibrium with a correlating device

Ø Correlating device “gives each player a private recommendation”

Ø Given the recommendation, it is optimal to follow it

Ø Any equilibrium in a game with (possibly partially private) correlating
device isomorphic to a correlated equilibrium

Ø Since correlating devices exist in nature, it is hard to accept the logic
of Nash equilibrium without accepting the logic of correlated
equilibrium

Ø Important class of correlated equilibria: public randomizations over
Nash equilibrium – for example flip a coin to see if we drive on the
right or the left
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Example

Chicken

6,6 2,7

7,2 0,0

three Nash equilibria (2,7), (7,2) and mixed equilibrium w/ probabilities
(2/3,1/3) and payoffs  (4 2/3, 4 2/3)

1/3 1/3

1/3 0

is a correlated equilibrium giving utility (5,5)
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Structure

The set of correlated equilibrium strategies is convex

If ,r r%  are correlated equilibria so is (1 )l r lr− + %  for 0 1l≤ ≤
Because equilibrium r  is defined by a system of linear inequalities

( , ) ( , ) ( ', ) ( , )
i ii i i i i i i i i is su s s s s u s s s sr r

− −− − − −≥∑ ∑
[this corrects an error in the original slides]

must hold for every , , 'i ii s s
note that for the is ’s with zero probability this just says: 0 0≥ .
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Calibrated adjustment procedures
Ø Return to the ideas of universal consistency

Ø Universal consistency deficient because it does not take account of
conditional probabilities

Ø Goal: if “enough” conditional probabilities are taken account of we get
global convergence to the set of correlated equilibria
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Conditional Probability Models: Experts

allow time dependent games

liminf ( / ) ( / ) max ( , )T t
i

t

T

s t
i i

t
i

t

T
T u T u s siÆ• =

-
=

- ≥ÂÂ1 1 0
11

universal consistency theorem for smooth fictitious play holds, without
change in proof
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a “model” makes conditional probability forecasts

an “expert” makes recommendations about how to play

s e ht
i i

t
i= -( )1

set v e s u e h st
i i

t
i i i

t
i

t
i( , ) ( ( ), )-

-
-= 1

conclusion: can do as well as if you knew who the best expert was in
advance
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Conditional Probability Models: Direct

classify observations into subsamples

countable collection of categories Ψ

classification rule y i H S: ¥ ÆY

y i
t
i

t
ih s( , )-1

f yt
i- ( )  empirical distribution of opponent’s play conditional on the

category ψ ; nt ( )y  is number of time category has occured

effective categories: minimal finite subset Y Yt Œ with all observations
through time t

mt  denotes the number of effective categories
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Assumption 1:  lim /t tm t→∞ = 0

This is essentially the method of sieves
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Universal Conditional Consistency

total utility actually received in the subsampleψ  is ut
i ( )y

c
n u s u n

n
t
i t s

i i
t

i
t
i

t

t

i
( )

( ) max ( , ) ( ) ( )

( )
y

y f y y
y

=
- >

=
RST

- 0

0 0

universal conditional consistency

 limsup( / ) ( )1 0T cT
i

t
y

y
£

ŒÂ Y
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Non Calibrated Case

categorization rule depends only on history, not on own plans

1)  given ht
i
-1, y ( )ht

i
-1  chooses the category

2)  play a smooth fictitious play against the sample in the chosen
category f yt

i
-
-

1( )

3)  add the new observation st
i-  to the category y ( )ht

i
-1

Works like smooth fictitious play within each category, so universally
conditionally consistent



42

Calibrated Case

try to use a rule y ( , )h st
i

t
i

-1

focus on special case y ( ),s St
i Y =

each category y  has a corresponding smooth fictitious play s f yi
t

i( ( ))-
-

1

suppose we choose category y  with probability l y( ) , then overall play
is

pr s si i
t

i i( ) ( ) ( ( ))[ ]= -
-Â l y s f y

y 1



43

but categories correspond to own strategies: fixed point property:
l( ) ( )s pr si i=

l l y s f y
y

( ) ( ) ( ( ))[ ]s si i
t

i i= -
-Â 1

unique fixed point, solvable by linear algebra
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Interpretation of Calibration

weather forecasting example: calibrated beliefs, versus calibrated
actions

consequence of universal calibration: global convergence
to the set of correlated equilibria
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Shapley Example

A M B

A 0,0 0,1 1,0

M 1,0 0,0 0,1

B 0,1 1,0 0,0
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smooth fictitious play (time in logs)

Exponential Fictitious Play
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condition on opponents last period play (time in logs)

Learning Conditional on Opponent's Play
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Discounted Learning

But what about the short-run?

In the short-run we are guessing…

A learning procedure $r  is e -as good as a procedure r  if for all
sequences of discount factors { }b t  and all histories ht

i

b r b r ett t t
i

tt t t
iu h s u h s

=

•
-

-
=

•
-

-Â Â£ +
1 1 1 1( ( ), ) ( $ ( ), )

Proposition:   For any learning procedure r   and any e  there exists a
categorical smooth fictitious play $r that is e -as good as r

exploits the fact that the time average result must be true for at every
time


